[1]
Bolotin, V.V., Ob uprugikh deformatsiyakh podzemnykh truboprovodov, prokladyvayemykh v statisticheski neodnorodnom grunte, Stroitelnaya mekhanika i raschet sooruzheni, No. 1 (1965) 52 p. (rus).
Google Scholar
[2]
Carlos, M. Tiago, Vitor, M.A. Leit Analysis of free vibration problems with the Element-Free Galerkin method, Universidade T'ecnica de Lisboa, (2012) 19 p.
Google Scholar
[3]
Courant, R. Hilbert, D. Methods of mathematical physics: (1953) Methods of mathematical physics: Interscience, New York 653 p.
Google Scholar
[4]
Clough, R.W., Penzien, J. Dynamics of Structures: Second edition (2000) Dynamics of Structures: Second edition, Mc Graw-Hill Inrenational Editions, 560 p.
Google Scholar
[5]
Muravieva, L.V., Ovtchinnikov, Igor G., Pshenichkina, V.A. Estimation of reliability a pipeline construction with operational damage: (2004) Estimation of reliability a pipeline construction with operational damage: Saratov, 256 p. (rus).
Google Scholar
[6]
Muravieva, L.V. Safety and durability of pipeline designs at dynamic influences: (2012) Safety and durability of pipeline designs at dynamic influences, Lambert Academic Publishing, 254 p. (rus).
Google Scholar
[7]
Sobolev, D.N. K raschetu konstruktsi, lezhashchikh na statisticheski neodnorodnom osnovanii Stroitelnaya mekhanika i raschet sooruzheni, No. 1 (1965) (rus).
Google Scholar
[8]
Sobolev, D.N., Yusupov L.K. Izgib balki na nelineynom statisticheski neodnorodnom osnovanii Stroitelnaya mekhanika i raschet sooruzheni, No. 5 (1975) (rus).
Google Scholar
[9]
Pshenichkin, A.P. Osnovy veroyatnostno-statisticheskoy teorii vzaimodeystviya sooruzeni s neodnorodnymi gruntovymi osnovaniyami: (2010).
Google Scholar
[10]
Krylov, A. N. O raschete balok, lezhashchikh na sploshnom uprugom osnovanii: (1930) O raschete balok, lezhashchikh na sploshnom uprugom osnovanii: Moscow: AN SSSR, 102 p. (rus).
Google Scholar
[11]
Korenev, B. G. Nekotoryye zadachi uprugosti i teploprovodnosti, reshayemyye v besselevykh funktsiyakh: (1960) Nekotoryye zadachi uprugosti i teploprovodnosti, reshayemyye v besselevykh funktsiyakh: Fizmatgiz, Moscow, 250 p. (rus).
Google Scholar
[12]
Khosak, A., Thira, J. Vibration analysis of exponential cross-section beam using Galerkin's method, International Journal of Applied Science and Technology, Vol. 2 (2012) Pp. 7-13.
Google Scholar
[13]
S. Schnepp Applying an hp-adaptive discontinuous galerkin scheme to beam dynamics simulations. Proceeding of ICAP09, San Francisco, Pp. 30-34.
Google Scholar
[14]
Sungpil, Park, Jintai, Chung Dynamic behaviors of a deploying beam with a non-linear coupled effect. (2011) 18th International Congress on Sound and Vibration. Rio de Janeiro. Brazil. 8 p.
Google Scholar
[15]
Timoshenko, S.P. On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, Vol. 41 (1921) Pp. 744-746.
DOI: 10.1080/14786442108636264
Google Scholar
[16]
Timoshenko, S.P. On the transverse vibrations of bars of uniform cross section, Philosophical Magazine, Vol. 43(1922) Pp. 125-131.
DOI: 10.1080/14786442208633855
Google Scholar
[17]
Lalin, V.V., Iavarov, A.V. Raschetnoe obosnovanie konstruktcii nadzemnogo uchastka gazoprovoda v usloviiakh Krainego Severa, Izvestiia VNIIG, 257 (2010) Pp. 112-115. (rus).
Google Scholar
[18]
Vlasov, V.Z., Leontev, N.N. Balki, plity I obolochki na uprugom osnovanii: (1960) Balki, plity I obolochki na uprugom osnovanii: Moscow, Fizmatgiz, 340 p. (rus).
Google Scholar