Strength Evaluation of a Linear Extended Structure on a Statically Inhomogeneous Foundation

Article Preview

Abstract:

In this paper the Galerkin method are used to obtain approximate solution to the stochastic beam bending problem. The present method is used to analyze the static deflection of beams. The uncertainty is represented as a parameterized stochastic process. Galerkin’s method selects the weight function functions in a special way: they are chosen from the basis functions, i.e. w(x)Î{ji(x)}, ni=1. It is required that the following n equations hold true. From the approximate solution, first and second order derivatives of the response are used. This paper solves the problem of strength and safety evaluation of a linear extended structure lying on a statically inhomogeneous foundation and presents an engineering analysis method.This paper solves the problem of strength and safety evaluation of a linear extended structure lying on a statically inhomogeneous foundation and presents an engineering analysis method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

703-709

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bolotin, V.V., Ob uprugikh deformatsiyakh podzemnykh truboprovodov, prokladyvayemykh v statisticheski neodnorodnom grunte, Stroitelnaya mekhanika i raschet sooruzheni, No. 1 (1965) 52 p. (rus).

Google Scholar

[2] Carlos, M. Tiago, Vitor, M.A. Leit Analysis of free vibration problems with the Element-Free Galerkin method, Universidade T'ecnica de Lisboa, (2012) 19 p.

Google Scholar

[3] Courant, R. Hilbert, D. Methods of mathematical physics: (1953) Methods of mathematical physics: Interscience, New York 653 p.

Google Scholar

[4] Clough, R.W., Penzien, J. Dynamics of Structures: Second edition (2000) Dynamics of Structures: Second edition, Mc Graw-Hill Inrenational Editions, 560 p.

Google Scholar

[5] Muravieva, L.V., Ovtchinnikov, Igor G., Pshenichkina, V.A. Estimation of reliability a pipeline construction with operational damage: (2004) Estimation of reliability a pipeline construction with operational damage: Saratov, 256 p. (rus).

Google Scholar

[6] Muravieva, L.V. Safety and durability of pipeline designs at dynamic influences: (2012) Safety and durability of pipeline designs at dynamic influences, Lambert Academic Publishing, 254 p. (rus).

Google Scholar

[7] Sobolev, D.N. K raschetu konstruktsi, lezhashchikh na statisticheski neodnorodnom osnovanii Stroitelnaya mekhanika i raschet sooruzheni, No. 1 (1965) (rus).

Google Scholar

[8] Sobolev, D.N., Yusupov L.K. Izgib balki na nelineynom statisticheski neodnorodnom osnovanii Stroitelnaya mekhanika i raschet sooruzheni, No. 5 (1975) (rus).

Google Scholar

[9] Pshenichkin, A.P. Osnovy veroyatnostno-statisticheskoy teorii vzaimodeystviya sooruzeni s neodnorodnymi gruntovymi osnovaniyami: (2010).

Google Scholar

[10] Krylov, A. N. O raschete balok, lezhashchikh na sploshnom uprugom osnovanii: (1930) O raschete balok, lezhashchikh na sploshnom uprugom osnovanii: Moscow: AN SSSR, 102 p. (rus).

Google Scholar

[11] Korenev, B. G. Nekotoryye zadachi uprugosti i teploprovodnosti, reshayemyye v besselevykh funktsiyakh: (1960) Nekotoryye zadachi uprugosti i teploprovodnosti, reshayemyye v besselevykh funktsiyakh: Fizmatgiz, Moscow, 250 p. (rus).

Google Scholar

[12] Khosak, A., Thira, J. Vibration analysis of exponential cross-section beam using Galerkin's method, International Journal of Applied Science and Technology, Vol. 2 (2012) Pp. 7-13.

Google Scholar

[13] S. Schnepp Applying an hp-adaptive discontinuous galerkin scheme to beam dynamics simulations. Proceeding of ICAP09, San Francisco, Pp. 30-34.

Google Scholar

[14] Sungpil, Park, Jintai, Chung Dynamic behaviors of a deploying beam with a non-linear coupled effect. (2011) 18th International Congress on Sound and Vibration. Rio de Janeiro. Brazil. 8 p.

Google Scholar

[15] Timoshenko, S.P. On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, Vol. 41 (1921) Pp. 744-746.

DOI: 10.1080/14786442108636264

Google Scholar

[16] Timoshenko, S.P. On the transverse vibrations of bars of uniform cross section, Philosophical Magazine, Vol. 43(1922) Pp. 125-131.

DOI: 10.1080/14786442208633855

Google Scholar

[17] Lalin, V.V., Iavarov, A.V. Raschetnoe obosnovanie konstruktcii nadzemnogo uchastka gazoprovoda v usloviiakh Krainego Severa, Izvestiia VNIIG, 257 (2010) Pp. 112-115. (rus).

Google Scholar

[18] Vlasov, V.Z., Leontev, N.N. Balki, plity I obolochki na uprugom osnovanii: (1960) Balki, plity I obolochki na uprugom osnovanii: Moscow, Fizmatgiz, 340 p. (rus).

Google Scholar