[1]
R. Koenker and G.S. Bassett: Regression quantiles. Econometrica. Vol. 46 (1978), pp.33-50.
DOI: 10.2307/1913643
Google Scholar
[2]
W. Hendricks and R. Koenker: Hierarchical spline models for conditional quantiles and the demand for electricity. Journal of the American Statistical Association. Vol. 87 (1992), pp.58-68.
DOI: 10.1080/01621459.1992.10475175
Google Scholar
[3]
K. Yu and M.C. Jones: Local linear quantile regression. Journal of the American Statistical Association. Vol. 93 (1998), pp.228-237.
DOI: 10.1080/01621459.1998.10474104
Google Scholar
[4]
C.Y. Tang and C.L. Leng: An empirical likelihood approach to quantile regression with auxiliary information. Statistics & Probability Letters. Vol. 82 (2012), pp.29-36.
DOI: 10.1016/j.spl.2011.09.003
Google Scholar
[5]
S. Lee: Efficient semiparametric estimation of a partially linear quantile regression model. Econometric Theory. Vol. 19 (2003), pp.1-31.
DOI: 10.1017/s0266466603191013
Google Scholar
[6]
Y. Sun: Semiparametric efficient estimation of partially linear quantile regression models. The Annals of Economics and Finance. Vol. 6 (2005), pp.105-127.
Google Scholar
[7]
X. He and H. Liang: Quantile regression estimates for a class of linear and partially linear errors-in- variables models. Statistica Sinica. Vol. 10 (2000), pp.129-140.
Google Scholar
[8]
S. Chen and S. Khan: Semiparametric estimation of a partially linear censored regression model. Economic Theory. Vol. 17 (2001), p.567–590.
DOI: 10.1017/s0266466601173032
Google Scholar
[9]
H.J. Wang, Z. Zhu and J. Zhou: Quantile regression in partially linear varying coefficient models. The Annals of Statistics. Vol. 37 (2009), p.3841–3866.
DOI: 10.1214/09-aos695
Google Scholar
[10]
J.M. Robins, A. Rotnitzky and L. Zhao: Estimation of regression coefficients when some regressors are not always observed. Journal of the American Statistical Association. Vol. 89 (1994), pp.846-866.
DOI: 10.1080/01621459.1994.10476818
Google Scholar
[11]
C.Y. Wang, S.J. Wang, L.P. Zhao and S.T. Ou, Weighted semiparametric estimation in regression analysis regression with missing covariates data. Journal of the American Statistical Association. Vol. 92 (1997), pp.512-525.
DOI: 10.1080/01621459.1997.10474004
Google Scholar
[12]
Q.H. Wang, O. Linton and W. Hardle: Semiparametric regression analysis with missing response at random. Journal of the American Statistical Association. Vol. 99 (2004), pp.334-345.
DOI: 10.1198/016214504000000449
Google Scholar
[13]
X. Lv and R. Li: Smoothed empirical likelihood analysis of partially linear quantile regression models with missing response variables. Advances in Statistical Analysis. Vol. 97 (2013), pp.317-347.
DOI: 10.1007/s10182-013-0210-4
Google Scholar
[14]
L.G. Xue and D. Xue: Empirical likelihood for semiparametric regression model with missing response data. Journal of Multivariate Analysis. Vol. 102 (2011), pp.723-740.
DOI: 10.1016/j.jmva.2010.11.001
Google Scholar
[15]
R.J.A. Little and D.B. Rubin: Statistical Analysis with Missing Data, Wiley, New York (1987).
Google Scholar