Quantile Regression for Partially Linear Models with Missing Responses at Random

Article Preview

Abstract:

In this paper, we propose a weighted quantile regression method for partially linear models with missing response at random. The proposed estimation method can give an efficient estimator for parametric components, and can attenuate the effect of missing responses. Some simulations are carried out to assess the performance of the proposed estimation method, and simulation results indicate that the proposed method is workable.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1013-1016

Citation:

Online since:

January 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Koenker and G.S. Bassett: Regression quantiles. Econometrica. Vol. 46 (1978), pp.33-50.

DOI: 10.2307/1913643

Google Scholar

[2] W. Hendricks and R. Koenker: Hierarchical spline models for conditional quantiles and the demand for electricity. Journal of the American Statistical Association. Vol. 87 (1992), pp.58-68.

DOI: 10.1080/01621459.1992.10475175

Google Scholar

[3] K. Yu and M.C. Jones: Local linear quantile regression. Journal of the American Statistical Association. Vol. 93 (1998), pp.228-237.

DOI: 10.1080/01621459.1998.10474104

Google Scholar

[4] C.Y. Tang and C.L. Leng: An empirical likelihood approach to quantile regression with auxiliary information. Statistics & Probability Letters. Vol. 82 (2012), pp.29-36.

DOI: 10.1016/j.spl.2011.09.003

Google Scholar

[5] S. Lee: Efficient semiparametric estimation of a partially linear quantile regression model. Econometric Theory. Vol. 19 (2003), pp.1-31.

DOI: 10.1017/s0266466603191013

Google Scholar

[6] Y. Sun: Semiparametric efficient estimation of partially linear quantile regression models. The Annals of Economics and Finance. Vol. 6 (2005), pp.105-127.

Google Scholar

[7] X. He and H. Liang: Quantile regression estimates for a class of linear and partially linear errors-in- variables models. Statistica Sinica. Vol. 10 (2000), pp.129-140.

Google Scholar

[8] S. Chen and S. Khan: Semiparametric estimation of a partially linear censored regression model. Economic Theory. Vol. 17 (2001), p.567–590.

DOI: 10.1017/s0266466601173032

Google Scholar

[9] H.J. Wang, Z. Zhu and J. Zhou: Quantile regression in partially linear varying coefficient models. The Annals of Statistics. Vol. 37 (2009), p.3841–3866.

DOI: 10.1214/09-aos695

Google Scholar

[10] J.M. Robins, A. Rotnitzky and L. Zhao: Estimation of regression coefficients when some regressors are not always observed. Journal of the American Statistical Association. Vol. 89 (1994), pp.846-866.

DOI: 10.1080/01621459.1994.10476818

Google Scholar

[11] C.Y. Wang, S.J. Wang, L.P. Zhao and S.T. Ou, Weighted semiparametric estimation in regression analysis regression with missing covariates data. Journal of the American Statistical Association. Vol. 92 (1997), pp.512-525.

DOI: 10.1080/01621459.1997.10474004

Google Scholar

[12] Q.H. Wang, O. Linton and W. Hardle: Semiparametric regression analysis with missing response at random. Journal of the American Statistical Association. Vol. 99 (2004), pp.334-345.

DOI: 10.1198/016214504000000449

Google Scholar

[13] X. Lv and R. Li: Smoothed empirical likelihood analysis of partially linear quantile regression models with missing response variables. Advances in Statistical Analysis. Vol. 97 (2013), pp.317-347.

DOI: 10.1007/s10182-013-0210-4

Google Scholar

[14] L.G. Xue and D. Xue: Empirical likelihood for semiparametric regression model with missing response data. Journal of Multivariate Analysis. Vol. 102 (2011), pp.723-740.

DOI: 10.1016/j.jmva.2010.11.001

Google Scholar

[15] R.J.A. Little and D.B. Rubin: Statistical Analysis with Missing Data, Wiley, New York (1987).

Google Scholar