[1]
Chen L, Reddy K, and Agrawal G. GATES: A Grid-based Middleware for Processing Distributed Data Streams[C]. High Performance Distributed Computing (HPDC), 2004. [ S. l]: IEEE.
DOI: 10.1109/hpdc.2004.1323528
Google Scholar
[2]
Aggarwal C, Han Jiawei, Wang Jianyong et al. On Demand Classification of Data Streams[C]. Proc. of 2004 Int. Conf on KDD, Seattle, WA, Aug. (2004).
Google Scholar
[3]
Qin S, Qian W, Zhou A. Adaptively Detecting Aggregation Bursts in Data Streams[C]. Proc. of the 10th Intl Conf on Database Systems for Advanced Applications , (2005).
DOI: 10.1007/11408079_39
Google Scholar
[4]
QIN Shou-Ke, QIAN Wei-Ning, ZHOU Ao-YING. Fractal-Based Algorithms for Burst Detection over Data Stream[J]. Journal of Software, 2006, 17(9): 1969-(1979).
Google Scholar
[5]
Wang Tao, Li Zhoujun, Yan Yuejin, et al. A Survey of Classification of Data Streams[J]. Journal of Computer Research and Development, 2007, 44(11): 1809-1815.
Google Scholar
[6]
Babcock B, Babu S, Datar M, et al. Models and issues in data stream systems[C]. Proceedings of the Symposium on Principles of Database Systems(PODS). 2002: 1-16.
DOI: 10.1145/543613.543615
Google Scholar
[7]
Cherniack M, Balakrishnan H, Balazinska M. Scalable Distributed Stream Processing[C]. Proc. of the 2003 CIDR Conference. 2003: 196-205.
Google Scholar
[8]
Kargupta H, Park B.Collective Data Mining:A New Perspective Toward Distributed Data Mining[C]. In Advances in Distributed and Parallel Knowledge Discovery,Eds: H. Kargupta and P. Chan,AAAI/MIT Press, 2000: 133~184.
DOI: 10.1145/347090.347533
Google Scholar
[9]
Chen R, Sivakumar D, and Kargupta H. An Approach to Online Bayesian[C]. Proc. of the Inter-network learning from multiple data streams. national Conference on Principles of Data Mining and Knowledge Discovery, 2001: 21-25.
DOI: 10.1109/icdm.2001.989503
Google Scholar
[10]
PARK B. Knowledge Discovery from Heterogeneous Data Streams Using Fourier Spectrum of Decision Trees[D]. Washington state university, (2001).
Google Scholar
[11]
Provost F J, Buchanan B. Inductive Policy: The Pragmatics of Bias Selection[J]. Machine Learning, 1995, 20: 35-61.
DOI: 10.1007/bf00993474
Google Scholar
[12]
Turinsky A L, Grossman R L. A Framework for Finding Distributed Data Mining Strategies That Are Intermediate between Centralized Strategies and In-place Strategies[C]. In Workshop on Distributed and Parallel Knowledge Discovery, Boston, MA, USA, 2000: 167-174.
Google Scholar
[13]
Gianluigi F, Clara P, Giandomenico S. An Adaptive Distributed Ensemble Approach to Mine Concept-Drifting Data Streams[C]. Proc. Of 19th IEEE Intl Conf on Tools with Artificial Intelligence, 2007, 2007: 183-187.
DOI: 10.1109/ictai.2007.51
Google Scholar
[14]
Liu Y , Choudhary A, Zhou J , Khokhar A . A Scalable Distributed Stream Mining System for Highway Traffic data[C]. Proc. Of PKDD, 2006: 309-321.
DOI: 10.1007/11871637_31
Google Scholar
[15]
Wen Yimin, Yang Yang, Lu Baoliang. Research on the Application of Ensemble Learning Algorithms to Incremental Learning[J]. Journal of Computer Research and Development, 2005, 42(extra edition): 222-227.
Google Scholar
[16]
Wang H, Fan W, Yu P S, Han J. Mining Concept-drifting Data Streams Using Ensemble Classifiers [C]. The 9th ACM Int'l Conf on KDD, Washington, ACM., (2003).
DOI: 10.1145/956750.956778
Google Scholar
[17]
Gianluigi F,Clara P,Giandomenico S. An Adaptive Distributed Ensemble Approach to Mine Concept-Drifting Data Streams[C]. Proc. Of 19th IEEE Intl Conf on Tools with Artificial Intelligence, 2007, Volume 2.
DOI: 10.1109/ictai.2007.51
Google Scholar
[18]
Zhang D, Li J, Kimeli K, Wang W. Sliding Window based Multi-Join Algorithms over Distributed Data Streams[C]. Proc. of the 22nd International Conference on Data Engineering, Apr. (2006).
DOI: 10.1109/icde.2006.143
Google Scholar
[19]
Ghoting A,Parthasarathy S, Facilitating Interactive Distributed Data Stream Processing and Mining[C]. Proc. of the IEEE Intl Symposium on Parallel and Distributed Processing Systems (IPDPS), April (2004).
DOI: 10.1109/ipdps.2004.1303026
Google Scholar