Synthesis and Dielectric Properties of PPy/TiO2 Composite

Article Preview

Abstract:

TiO2/PPy composite was prepared by in situ polymerization of pyrrole on TiO2 microparticles. The results show that PPy chains have ordered arrangement to some extent. The average diameter of PPy microspheres is roughly 500 nm. TiO2 microspheres obtained are anatase-type. PPy/TiO2 composite particles are similar to spheres and there is some reunite phenomenon. The tanδe value for TiO2/PPy composite is higher than PPy in the frequency range of 8.2-12.4 GHz and it has achieved a maximum of 0.57 at 11.9 GHz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

38-41

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Yang, J. Zhang and Y. Guo, Synthesis of intrinsic fluorescent polypyrrole nanoparticles by atmospheric pressure plasma polymerization, Applied Surface Science. 255 (2009) 6924–6929.

DOI: 10.1016/j.apsusc.2009.03.016

Google Scholar

[2] A. Joshi, S.A. Gangal, S.K. Gupta, Ammonia sensing properties of polypyrrole thin films at room temperature, Sensors and Actuators B. 156(2011) 938–942.

DOI: 10.1016/j.snb.2011.03.009

Google Scholar

[3] C. Yang, P. Liu, J.S. Guo, Polypyrrole/vermiculite nanocomposites via self-assembling and in situ chemical oxidative polymerization, Synthetic Metals. 160(2010) 592–598.

DOI: 10.1016/j.synthmet.2009.12.012

Google Scholar

[4] K. Bhupendra, M. Shar, K. Neeraj, Dielectric behavior of polyaniline–CNTs composite in microwave region, Composites Science and Technology, 69(2009) 1932–(1935).

DOI: 10.1016/j.compscitech.2009.04.012

Google Scholar

[5] W.C. Geng, N. Li, X.T. Li, Effect of polymerization time on the humidity sensing properties of polypyrrole, Sensors and Actuators B. 125 (2007) 114–119.

DOI: 10.1016/j.snb.2007.01.041

Google Scholar

[6] B.C. Huang, Y. Yang, X.S. Chen, Preparation and characterization of CdS–TiO2 nanoparticles supported on multi-walled carbon nanotubes, Catalysis Communications. 11 (2010) 844–847.

DOI: 10.1016/j.catcom.2010.03.006

Google Scholar

[7] J.B. Zhou, Y. Cheng, J. G. Yu, Preparation and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanocomposite thin films, Journal of photochemistry and Photobiology A: Chemistry. 223(2011) 82–87.

DOI: 10.1016/j.jphotochem.2011.07.016

Google Scholar

[8] H. Song, M. Dai, Y.T. Guo, Preparation of composite TiO2–Al2O3 supported nickel phosphide hydrotreating catalysts and catalytic activity for hydrodesulfurization of dibenzothiophene, Fuel Processing Technology. 96(2012) 228–236.

DOI: 10.1016/j.fuproc.2012.01.001

Google Scholar

[9] M. Afuyoni, G. Nashed, I. M. Nasser, TiO2 doped with SnO2 and studing its structurail and electrical properties, Energy Procedia. 6(2011) 11–20.

DOI: 10.1016/j.egypro.2011.05.002

Google Scholar

[10] X. Zhang, L. Song, X. L. Zeng, Effects of Electron Donors on the TiO2 Photocatalytic Reduction of Heavy Metal Ions under Visible Light, Energy Procedia. 17(2012) 422–428.

DOI: 10.1016/j.egypro.2012.02.115

Google Scholar

[11] P.G. Su, L.N. Huang, Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films, Sensors and Actuators B. 123(2007) 501–507.

DOI: 10.1016/j.snb.2006.09.052

Google Scholar

[12] C.R. Zhang, Q.L. Li, J.Q. Li, Synthesis and characterization of polypyrrole/TiO2 composite by in situ polymerization method, Synthetic Metals. 160(2010) 1699–1703.

DOI: 10.1016/j.synthmet.2010.06.003

Google Scholar