The Current State-of-the-Art in the Field of Material Models of Concrete and other Cementitious Composites

Article Preview

Abstract:

The topic of this paper is the short review of current state-of-the-art in the field of material models of concrete and its utilization for numerical analysis of concrete and prestressed concrete structures. The problem of compiling constitutive relations for numerical simulation of concrete structures is not yet closed. It is caused by different behavior of concrete in tension and compression. Due to formation and development of cracks it is necessary to describe material model of concrete in tension as precisely as possible. The paper aims to create a brief historical overview in this field and then aims to create a short summary of current approaches that were published in conference contributions and in journals during recent years.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-139

Citation:

Online since:

January 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] ANSYS, Inc. Release 14. 5 Documentation for ANSYS. Southpointe 275 Technology Drive Canonsburg, PA 15317, (2012).

DOI: 10.1016/b978-0-12-811768-2.00022-5

Google Scholar

[2] LS-DYNA keyword user's manual, version 970. Livermore Software Technology Corporation; (2003).

Google Scholar

[3] ATENA Program Documentation, Cervenka consulting Ltd., (2013).

Google Scholar

[4] Multiplas, User's Manual Release 5. 0. 679 for ANSYS 14. 0 and ANSYS 14. 5, Dynardo, Weimar, Germany, (2013), www. dynardo. de.

Google Scholar

[5] S. Kumar, S. V. Barai, Concrete fracture models and applications. Berlin: Springer-Verlag, (2011), xxii, 262 p. ISBN 978-3-642-16763-8.

Google Scholar

[6] F. Hokes. Different Approaches to Numerical Simulations of Prestressed Concrete Structural Elements. In proceeding: Applied Research in Materials and Mechanics Engineering. Vol. 621 (2014), ISSN: 1660-9336. p.148.

DOI: 10.4028/www.scientific.net/amm.621.148

Google Scholar

[7] P. Hradil, J. Kala. Analysis of the Shear Failure of a Reinforced Concrete Wall. In proceeding of: Applied Research in Materials and Mechanics Engineering. Vol. 621 (2014), ISSN: 1660-9336. p.120.

DOI: 10.4028/www.scientific.net/amm.621.124

Google Scholar

[8] M. Jirásek, J. Zeman. Přetváření a porušování materiálů: dotvarování, plasticita, lom a poškození. 1. ed. Praha: Nakladatelství ČVUT, (2006), 175 p. ISBN 978-80-01-03555-9.

Google Scholar

[9] Z. P. Bažant, J. Planas,. Fracture and Size Effect in Concrete and Other Quasi-brittle materials. Boca Raton: CRC Press (1998).

Google Scholar

[10] C. E. Inglis, Stresses in a plate due to presence of cracks and sharp corners. Trans. Inst. Naval Archit. vol. 55 (1913), pp.214-291.

Google Scholar

[11] A. A. Griffith, The phenomena of rupture and flow in solids. Phil. Trans. vol. 221A (1921), pp.179-180.

Google Scholar

[12] G. R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate, J Appl. Mech. Trans. ASME vol. 24 (1957), pp.361-364.

DOI: 10.1115/1.4011772

Google Scholar

[13] Y. S. Jenq, S. P. Shah, Two parameter fracture model for concrete. J. Eng. Mech. ASCE vol. 111 (10) (1985), pp.1227-1241.

DOI: 10.1061/(asce)0733-9399(1985)111:10(1227)

Google Scholar

[14] B. L. Karihaloo, P. Nallathambi, An improved effective crack model for the determination of fracture toughness of concrete. Cem. Concr. Res. vol. 19 (1989), pp.603-610.

DOI: 10.1016/0008-8846(89)90012-4

Google Scholar

[15] RILEM Draft Recommendations (TC89-FMT), Size-effect method from determining fracture energy and process zone size of concrete. Mater. Struct. vol. 23 (138) (1990), pp.461-465.

DOI: 10.1007/bf02472030

Google Scholar

[16] S. Xu, H. W. Reinhardt, Determination of double-K criterion for crack propagation in quasi-brittle materials Part I: experimental investigation of crack prapagation, Int. J. Fract. vol. 92 (1999), pp.111-149.

Google Scholar

[17] S. Xu, H. W. Reinhardt, Determination of double-K criterion for crack propagation in quasi-brittle materials Part II: enalytical evaluating and practical measuring methods for three point bending notched beams. Int. J. Fract. vol. 98 (1999).

Google Scholar

[18] S. Xu, H. W. Reinhardt, Determination of double-K criterion for crack propagation in quasi-brittle materials Part III: compact tension specimens and wedge splitting specimens. Int. J. Fract. vol. 98 (1999), pp.179-193.

Google Scholar

[19] S. Xu, X. Zhang, Determination of fracture parameters for crack propagation in concrete using an energy approach. Eng. Fract. Mech. vol. 75 (2008), pp.4292-4308.

DOI: 10.1016/j.engfracmech.2008.04.022

Google Scholar

[20] A. Hillerborg, A. Modeer, P. E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. vol. 6 (1976), pp.773-782.

DOI: 10.1016/0008-8846(76)90007-7

Google Scholar

[21] Z. P. Bažant, B. H. Oh, Crack band theory for fracture of concrete. Mater. Struct. vol. 16 (93), (1983), pp.155-177.

Google Scholar

[22] R. Mises, Mechanik der festen Körper im plastisch deformablen Zustand. Göttin. Nachr. Math. Phys. vol. 1 (1913), p.582–592.

Google Scholar

[23] W. Rankine, On the stability of loose earth. Philosophical Transactions of the Royal Society of London, Vol. 147 (1857).

Google Scholar

[24] D. C. Drucker, W. Prager. Soil Mechanics and Plastic Analysis or Limit Design. Quarterly of Applied Mathematics. vol. 10. 2 (1952), pp.157-165.

DOI: 10.1090/qam/48291

Google Scholar

[25] M. Sharafisafa, M. Nazem, Application of the distinct element method and the extended finite element method in modelling cracks and coalescence in brittle materials. Computational Materials Science, Vol. 91 (2014).

DOI: 10.1016/j.commatsci.2014.04.006

Google Scholar

[26] J. Eliáš, M. Vořechovský, Discrete numerical simulation of fracture propagation in disordered materials: mesh dependency, In proceeding of: 17th European Conference on Fracture, ISBN 9781617823190, Czech Republic (2008).

Google Scholar

[27] J. Alfaiate, E.B. Pires, J.A.C. Martins, A finite element analysis of non-prescribed crack propagation in concrete, Computers & Structures, Vol. 63, Issue 1 (1997), pp.17-26, ISSN: 0045-7949, http: /dx. doi. org/10. 1016/S0045-7949(97)85247-9.

DOI: 10.1016/s0045-7949(97)85247-9

Google Scholar

[28] L. Jurášek, P. Hradil, P. Vymlátil, Analýza smykového porušení železobetonové stěny. In proceeding of: 20th SVSFEM ANSYS Users Group Meeting and Conference, (2012).

Google Scholar

[29] N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Engng., vol. 46 (1999), p.131–150.

DOI: 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j

Google Scholar

[30] Wikipedia, the free encyclopedia, Extended finite element method, (2014) Information on: http: /en. wikipedia. org/wiki/Extended_finite_element_method.

Google Scholar

[31] L.J. Malvar, J. E. Crawford, J. W. Wesevich. A plasticity concrete material model for Dyna3D. Int. J. Impact. Eng. vol. 19(9–10) (1997), p.847–873.

DOI: 10.1016/s0734-743x(97)00023-7

Google Scholar