Identification of Biodegradation Related Genes from Bacterial Consortium NAR-2

Article Preview

Abstract:

In this study, PCR amplification of biodegradation related genes from NAR-2 bacterial consortium was accomplished. NAR-2 bacterial consortium consists of Citrobacter freundii A1, Enterococcus casseliflavus C1 and Enterobacter cloacae L17. The amplified genes were sequenced, bioinformatically analyzed and compared with the sequences from GenBank database of National Centre of Biotechnology Information (NCBI) using BLASTn and BLASTp search tools. The assembled sequences represented almost >70% of similarity to biodegradation related genes. These genes may act as a key intermediate enzyme in biodegradation pathway.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

220-225

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Rafols, D. Barcelo, Determination on mono- and disulphonated azo dyes by liquid chromatograpgy-atmospheric pressure ionization mass spectrometry, Journal of Chromatography A. 777 (1997) 177-192.

DOI: 10.1016/s0021-9673(97)00429-9

Google Scholar

[2] I.S. Thakur, Xenobiotics: pollutants and their degradation-mathane, benzene, pesticides, bioabsorption of metals, Environmental Microbiology.

Google Scholar

[3] A.A. Pandey, P. Singh, L. Iyengar, Bacterial decolorization and degradation of azo dyes, Journal of Biodeterioration and Biodegradation. 59 (2007) 73–84.

DOI: 10.1016/j.ibiod.2006.08.006

Google Scholar

[4] C.I. Pearce, J.R. Lloyd, J.T. Guthrie, The removal of color from textile waste water using whole bacterial cells: review, Dyes and Pigments. 58 (2003) 179-196.

DOI: 10.1016/s0143-7208(03)00064-0

Google Scholar

[5] G.F. Chan, N.A.A. Rashid, L.L. Koay, S.Y. Chang, W.L. Tan, Identification and optimization of novel NAR-1 bacterial consortium for the biodegradation of Orange II, Insight Biotechnol. 1 (2011) 7–16.

DOI: 10.5567/ibiot-ik.2011.7.16

Google Scholar

[6] M. Quadroni, P. James, P. Dainese-Hatt, M.A. Kertesz, Proteome mapping, mass spectrometric sequencing and reverse transcription-PCR for characterization of the sulfate starvation-induced response in Psedomonas cepacia aeruginosa PAO1, European Journal of Biochemistry. 266(3) (2003).

DOI: 10.1046/j.1432-1327.1999.00941.x

Google Scholar

[7] A. Kahnert, M.A. Kertesz, Characterization of a Sulfur-regulated Oxygenative Alkylsulfatase from Pseudomonas putida S-313, Journal of Biological Chemistry. 275(41) (2000) 31661-31667.

DOI: 10.1074/jbc.m005820200

Google Scholar

[8] E. Eichhorn, J.R. van der Ploeg, T. Leisinger, Deletion Analysis of the Escherichia coli Taurine and Alkanesulfonate Transport Systems, J. Bacteriol. 182(10) (2000) 2687-2695.

DOI: 10.1128/jb.182.10.2687-2695.2000

Google Scholar

[9] Tsang, S.H. Jimmy, P.J. Sallis, A.T. Bull, D.J. Hardman, A monobromoacetate dehalogenase from psedumonas cepacia MBA4, Archives of microbiology. 150 (1988) 441-446.

DOI: 10.1007/bf00422284

Google Scholar

[10] M. E. Clark, Q. He, Z. He, K.H. Huang, E.J. Alm, X. Wan, T.C. Hazen, A.P. Arkin, J.D. Wall, J. Zhou, M. W Fields, Temporal transcriptomic analysis as desulfovibrio vulgaris hildenborough transitions into stationary phase during electron donor depletion, Applied and Environmental Biotechnology. 72 ( 2006) 5578–5588.

DOI: 10.1128/aem.00284-06

Google Scholar

[11] H.L. Jensen, Decomposition of chloro-substituted aliphatic acids by soil bacteria, Canadian Journal of Microbiology. 3 (1957) 151–164.

DOI: 10.1139/m57-019

Google Scholar

[12] Pandey, Gunjan, R.K. Jain, Bacterial Chemotaxis towards Environmental Pollutants : Role in Bioremediation, Applied and Environmental Microbiology. 68 (2002) 5789-5795.

DOI: 10.1128/aem.68.12.5789-5795.2002

Google Scholar

[13] Babbitt, C. Patricia, G.L. Kenyon, B.M. Martin, H. Charest, M. Slyvestre, J.D. Scholten, K.H. Chang, P.H. Liang, D. Dunaway-Mariano, Ancestry of the 4-chlorobenzoate dehalogenase: analysis of amino acid sequence identities among families of acyl: adenyl ligases, enoyl-CoA hydratases/isomerases, and acyl-CoA thioesterases, Biochemistry. 31 (1992).

DOI: 10.1021/bi00139a024

Google Scholar

[14] Mayer, Jutta, A.M. Cook, Homotaurine metabolized to 3-sulfopropanoate in Cupriavidus necator H16: enzymes and genes in a patchwork pathway, Journal of bacteriology. 191 (2009) 6052–6058.

DOI: 10.1128/jb.00678-09

Google Scholar

[15] Egland, G. Paul , J. Gibson, C.S. Harwood, Benzoate-coenzyme A ligase, encoded by badA, is one of three ligases able to catalyze benzoyl-coenzyme A formation during anaerobic growth of Rhodopseudomonas palustris on benzoate, Journal of bacteriology. 177 (1995).

DOI: 10.1128/jb.177.22.6545-6551.1995

Google Scholar

[16] K. Perei, G. Rákhely, I. Kiss, B. Polyák, K.L. Kovács, Biodegradation of sulfanilic acid by Pseudomonas paucimobilis, Applied microbiology and biotechnology. 55 (2001) 101–107.

DOI: 10.1007/s002530000474

Google Scholar