Understanding of Water Sorption Mechanism in Cellulose-Water System: The Perspective of NMR

Article Preview

Abstract:

Water under the fibre saturation point affects many aspects of the performance of the cellulose. Therefore an understanding of the interaction of water with cellulose is essential for the interpretation and prediction of cellulose response. Because of the complicated structure and the different possibilities of the hydrogen-bonds formation, the mechanism of water sorption in water-cellulose system has been studied by different techniques. This paper gave an outline of the structure of cellulose, also an overview of the researches of the mechanism of cellulose-water interaction using nuclear magnetic resonance. Further observations were made aiming at having a deeper understanding of the water-cellulose system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

388-392

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. C. Khazraji and S. Robert: J. Nanomater. Hindawi ID 745979 (2013).

Google Scholar

[2] M.A.S.A. Samir, F. Alloin and A. Dufresne: Biomacromolecules Vol. 6 (2005), p.612.

Google Scholar

[3] F.F.P. Kollmann and W.A. Côté, in: Principles of wood science and technology, edited by F.F. P Kollmann and W.A. Côté, volume 1 of solid wood, Springer-Verlag (1968).

DOI: 10.1007/978-3-642-87928-9

Google Scholar

[4] A.M. Olsson and L. Salmén: Carbohyd. Res Vol. 339 (2004), p.813.

Google Scholar

[5] A.M. Agrawal, R.V. Manke, W.M. Kolling and S. H. Neau: J. Pharm. Sci Vol. 93(2004), p.1766.

Google Scholar

[6] M.F. Froix and R. Nelson: Macromolecules Vol. 8 (1975), p.726.

Google Scholar

[7] E.L. Perkins, W.J. Batchelor: Carbohyd. Polym Vol. 87 (2012), p.361.

Google Scholar

[8] E. Sjöström, in: Wood Chemistry: Fundamentals and Applications, edited by E. Sjöström, Academic Press, San Diego, NY(1981).

Google Scholar

[9] T. Hatakeyama, Y. Ikeda and H. Hatakeyama: Macromol. Chem. Phys Vol. 188 (1987), p.1875.

Google Scholar

[10] J. E. Stone and A. M. Scallan: Cell. Chem. Technol Vol. 2 (1968), p.343.

Google Scholar

[11] T. Eldera, N. Labbéb, D. Harperb and T. Rialsb: Biomass. Bioenerg Vol. 30 (2006), p.855.

Google Scholar

[12] M . Häggkvist, T.Q. Li and L. Ödberg: Cellulose Vol. 5 (1998), p.33.

Google Scholar

[13] S. Brunauer, P. H. Emmett and E. Teller: J. Am. Chem. Soc Vol. 60 (1938), p.309.

Google Scholar

[14] A.J. Hailwoodand S. Horrobin: Trans. Faraday. Spc Vol. 42 (1946), p B84.

Google Scholar

[15] T.Q. Li, U. Henriksson, T. Klason, and L. Ödberg: J. Colloid. Interf. Sci Vol. 154 (1992), p.305.

Google Scholar

[16] D. Topgaard and O. Soderman: Langmuir Vol. 17 (2001), p.2694.

Google Scholar

[17] Y. Ogiwara, M. Kubota, S. Hayashi, and N. Mitomo, J. Appl. Polym. Sci Vol. 13 (1969), P. 1689.

Google Scholar

[18] T. F. Child, Polymer Vol. 13 (1972), P. 259.

Google Scholar

[19] S. Park, R.A. Venditti, H. Jameel and J.J. Pawlak: Tappi Journal Vol. 6 (2007), P. 10.

Google Scholar

[20] U. Weise, T. Maloney and H. Paulapuro: Cellulose Vol. 3 (1996), p.189.

Google Scholar