[1]
Schaider, L.A., D.B. Senn, D.J. Brabander, K.D. McCarthy, and J.P. Shine, Characterization of Zinc, Lead, and Cadmium in Mine Waste: Implications for Transport, Exposure, and Bioavailability. Environmental Science & Technology, 2007. 41(11): pp.4164-4171.
DOI: 10.1021/es0626943
Google Scholar
[2]
Ji, K., J. Kim, M. Lee, S. Park, H. -J. Kwon, H. -K. Cheong, J. -Y. Jang, D. -S. Kim, S. Yu, Y. -W. Kim, K. -Y. Lee, S. -O. Yang, I.J. Jhung, W. -H. Yang, D. -H. Paek, Y. -C. Hong, and K. Choi, Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environmental Pollution, 2013. 178: pp.322-328.
DOI: 10.1016/j.envpol.2013.03.031
Google Scholar
[3]
Neiva, A.M.R., P.C.S. Carvalho, I.M.H.R. Antunes, M.M.V.G. Silva, A.C.T. Santos, M.M.S. Cabral Pinto, and P.P. Cunha, Contaminated water, stream sediments and soils close to the abandoned Pinhal do Souto uranium mine, central Portugal. Journal of Geochemical Exploration, 2014. 136: pp.102-117.
DOI: 10.1016/j.gexplo.2013.10.014
Google Scholar
[4]
Hasheela, I., G.I.C. Schneider, R. Ellmies, A. Haidula, R. Leonard, K. Ndalulilwa, O. Shigwana, and B. Walmsley, Risk assessment methodology for shut-down and abandoned mine sites in Namibia. Journal of Geochemical Exploration, 2014. 144: pp.572-580.
DOI: 10.1016/j.gexplo.2014.05.009
Google Scholar
[5]
Palumbo-Roe, B., B. Klinck, V. Banks, and S. Quigley, Prediction of the long-term performance of abandoned lead zinc mine tailings in a Welsh catchment. Journal of Geochemical Exploration, 2009. 100(2-3): pp.169-181.
DOI: 10.1016/j.gexplo.2008.05.003
Google Scholar
[6]
Singh, K., C. Ihlenfeld, C. Oates, J. Plant, and N. Voulvoulis, Developing a screening method for the evaluation of environmental and human health risks of synthetic chemicals in the mining industry. International Journal of Mineral Processing, 2011. 101(1–4): pp.1-20.
DOI: 10.1016/j.minpro.2011.07.014
Google Scholar
[7]
Singh, K., C. Oates, J. Plant, and N. Voulvoulis, Undisclosed chemicals — implications for risk assessment: A case study from the mining industry. Environment International, 2014. 68(0): pp.1-15.
DOI: 10.1016/j.envint.2014.02.012
Google Scholar
[8]
Yang, K., L. Zhu, and B. Xing, Enhanced Soil Washing of Phenanthrene by Mixed Solutions of TX100 and SDBS. Environmental Science & Technology, 2005. 40(13): pp.4274-4280.
DOI: 10.1021/es060122c
Google Scholar
[9]
Wei, Y. -L., Y. -W. Yang, and N. Cheng, Study of Thermally Immobilized Cu in Analogue Minerals of Contaminated Soils. Environmental Science & Technology, 2000. 35(2): pp.416-421.
DOI: 10.1021/es0008721
Google Scholar
[10]
Yang, J. -S., M.J. Kwon, J. Choi, K. Baek, and E.J. O'Loughlin, The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolyte conditioning. Chemosphere, 2014. 117(0): pp.79-86.
DOI: 10.1016/j.chemosphere.2014.05.079
Google Scholar
[11]
Mignardi, S., A. Corami, and V. Ferrini, Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Chemosphere, 2012. 86(4): pp.354-360.
DOI: 10.1016/j.chemosphere.2011.09.050
Google Scholar
[12]
Ng, Y.S., B. Sen Gupta, and M.A. Hashim, Performance Evaluation of Two-Stage Electrokinetic Washing as Soil Remediation Method for Lead Removal using Different Wash Solutions. Electrochimica Acta, 2014. 147(0): pp.9-18.
DOI: 10.1016/j.electacta.2014.08.124
Google Scholar
[13]
Baek, K., D. -H. Kim, S. -W. Park, B. -G. Ryu, T. Bajargal, and J. -S. Yang, Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing. Journal of Hazardous Materials, 2009. 161(1): pp.457-462.
DOI: 10.1016/j.jhazmat.2008.03.127
Google Scholar
[14]
Grandlic, C.J., M.O. Mendez, J. Chorover, B. Machado, and R.M. Maier, Plant Growth-Promoting Bacteria for Phytostabilization of Mine Tailings. Environmental Science & Technology, 2008. 42(6): p.2079-(2084).
DOI: 10.1021/es072013j
Google Scholar
[15]
Abreu, M.M., E.S. Santos, M. Ferreira, and M.C.F. Magalhães, Cistus salviifolius a promising species for mine wastes remediation. Journal of Geochemical Exploration, 2012. 113(0): pp.86-93.
DOI: 10.1016/j.gexplo.2011.03.007
Google Scholar
[16]
Marchiol, L., G. Fellet, F. Boscutti, C. Montella, R. Mozzi, and C. Guarino, Gentle remediation at the former Pertusola Sud, zinc smelter: Evaluation of native species for phytoremediation purposes. Ecological Engineering, 2013. 53(0): pp.343-353.
DOI: 10.1016/j.ecoleng.2012.12.072
Google Scholar
[17]
Dhal, B., N.N. Das, H.N. Thatoi, and B.D. Pandey, Characterizing toxic Cr(VI) contamination in chromite mine overburden dump and its bacterial remediation. Journal of Hazardous Materials, 2013. 260(0): pp.141-149.
DOI: 10.1016/j.jhazmat.2013.04.050
Google Scholar
[18]
Kumari, D., M. Li, X. Pan, and Q. Xin-Yi, Effect of bacterial treatment on Cr(VI) remediation from soil and subsequent plantation of Pisum sativum. Ecological Engineering, 2014. 73(0): pp.404-408.
DOI: 10.1016/j.ecoleng.2014.09.093
Google Scholar
[19]
Babu, A.G., J. Shim, K. -S. Bang, P.J. Shea, and B. -T. Oh, Trichoderma virens PDR-28: A heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. Journal of Environmental Management, 2014. 132(0): pp.129-134.
DOI: 10.1016/j.jenvman.2013.10.009
Google Scholar