Applying Data Mining Techniques on Continuous Sensed Data for Daily Living Activity Recognition

Article Preview

Abstract:

In this paper, several data mining techniques were discussed and analyzed in order to achieve the objective of human daily activities recognition based on a continuous sensing data set. The data mining techniques of decision tree, Naïve Bayes and Neural Network were successfully applied to the data set. The paper also proposed an idea of combining the Neural Network with the Decision Tree, the result shows that it works much better than the typical Neural Network and the typical Decision Tree model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-196

Citation:

Online since:

March 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yu-Jin Hong, Ig-Jae Kim, Sang Chul Ahn, Hyoung-Gon Kim, Activity Recognition using Wearable Sensors for Elder Care, IEEE journal on Future Generation Communication and Networking, vol. 2, 2008, pp.302-305.

DOI: 10.1109/fgcn.2008.165

Google Scholar

[2] Uslu G., Altun O., Baydere S., A Bayesian approach for indoor human activity monitoring, IEEE International Conference on Hybrid Intelligent Systems (HIS), 2011, pp.324-327.

DOI: 10.1109/his.2011.6122126

Google Scholar

[3] Sharma, A. ;  Young-Dong Lee ; Wan-Young Chung, High Accuracy Human Activity Monitoring Using Neural Network, Convergence and Hybrid Information Technology, vol. 1, 2008, pp.430-435.

DOI: 10.1109/iccit.2008.394

Google Scholar

[4] Xi Long ; Bin Yin ; Aarts, R.M., Single-accelerometer-based daily physical activity classification, Engineering in Medicine and Biology Society, EMBC 2009. Annual International Conference of the IEEE, 2009, pp.6107-7110.

DOI: 10.1109/iembs.2009.5334925

Google Scholar

[5] Chernbumroong, S. ;  Atkins, A.S. ; Hongnian Yu, Activity classification using a single wrist-worn accelerometer, IEEE International Conference on Software, Knowledge Information, Industrial Management and Applications (SKIMA), 2011, pp.1-6.

DOI: 10.1109/skima.2011.6089975

Google Scholar

[6] Roggen, D. ; Calatroni, A. ; Rossi, M. ; Holleczek, T. ; Forster, K. ; Troster, G. ; Lukowicz, P. ; Bannach, D. ; Pirkl, G. ; Ferscha, A. ; Doppler, J. ; Holzmann, C. ; Kurz, M. ; Holl, G. ; Chavarriaga, R. ; Sagha, H. ; Bayati, H. ; Creatura, M. ; del R Millan, J., Collecting complex activity datasets in highly rich networked sensor environments, Seventh International Conference on Networked Sensing Systems (INSS), 2010, pp.233-240.

DOI: 10.1109/inss.2010.5573462

Google Scholar

[7] Lukowicz, P. ; Pirkl, G. ; Bannach, D. ; Wagner, F. ; Calatroni, A. ; Foerster, K. ; Holleczek, T. ; Rossi, M. ; Roggen, D.; Troester, G. ; Doppler, J. ; Holzmann, C. ; Riener, A. ; Ferscha, A. ; Chavarriaga, R., Recording a Complex, Multi Modal Activity Data Set for Context Recognition, 23rd International Conference on Architecture of Computing Systems (ARCS), 2010, pp.1-6.

DOI: 10.1109/wowmom.2009.5282442

Google Scholar

[8] Jolliffe, I.T., Principal Component Analysis, second edition (Springer), 2002,  p.487.

Google Scholar