The Design and Implementation of Moving Object Detecting Algorithm in Intelligent Video Surveillance

Article Preview

Abstract:

In view of the problems existed in moving object detection in video surveillance system, background subtraction method is adopted and combined with Surendra algorithm for background modeling, an algorithm of detecting moving object from video is proposed, and OpenCV programming is adopted in Visual c ++ 6.0 for implementation. Experimental results indicate that the algorithm can accurately detect and identify moving object in video by reading the image sequence of surveillance video, the validity of the algorithm is verified.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

779-783

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Held, C., Krumm, J., Markel, P., & Schenke, R. P. (2012). Intelligent video surveillance. Computer, 45(3), 0083-84.

DOI: 10.1109/mc.2012.97

Google Scholar

[2] Dedeoglu, Y. (2004). Moving object detection, tracking and classification for smart video surveillance (Doctoral dissertation, bilkent university).

Google Scholar

[3] Zhou, D., & Zhang, H. (2005, October). Modified GMM background modeling and optical flow for detection of moving objects. In Systems, Man and Cybernetics, 2005 IEEE International Conference on (Vol. 3, pp.2224-2229). IEEE.

DOI: 10.1109/icsmc.2005.1571479

Google Scholar

[4] Benezeth, Y., Jodoin, P. M., Emile, B., Laurent, H., & Rosenberger, C. (2008, December). Review and evaluation of commonly-implemented background subtraction algorithms. In Pattern Recognition, 2008. ICPR 2008. 19th International Conference on (pp.1-4.

DOI: 10.1109/icpr.2008.4760998

Google Scholar

[5] Piccardi, M. (2004, October). Background subtraction techniques: a review. In Systems, man and cybernetics, 2004 IEEE international conference on(Vol. 4, pp.3099-3104). IEEE.

DOI: 10.1109/icsmc.2004.1400815

Google Scholar

[6] Sonka, M., Hlavac, V., & Boyle, R. (2014). Image processing, analysis, and machine vision. Cengage Learning.

Google Scholar

[7] Bouwmans, T., El Baf, F., & Vachon, B. (2008). Background modeling using mixture of gaussians for foreground detection-a survey. Recent Patents on Computer Science, 1(3), 219-237.

DOI: 10.2174/2213275910801030219

Google Scholar

[8] Fang-ming, X., & Guan-ming, L. (2009). Moving Object Detection Based on Ameliorative Surendra Background Update Arithmetic [J]. Shanxi Electronic Technology, 5, 016.

Google Scholar

[9] Zeng, W., Gao, W., & Zhao, D. (2003, May). Automatic moving object extraction in MPEG video. In Circuits and Systems, 2003. ISCAS'03. Proceedings of the 2003 International Symposium on (Vol. 2, pp. II-524). IEEE.

DOI: 10.1109/iscas.2003.1206026

Google Scholar

[10] Prati, A., Mikic, I., Trivedi, M. M., & Cucchiara, R. (2003). Detecting moving shadows: algorithms and evaluation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25(7), 918-923.

DOI: 10.1109/tpami.2003.1206520

Google Scholar