Real-Time Image Shift Detection with Cross Correlation Coefficient Algorithm for Correlating Shack-Hartmann Wavefront Sensors Based on FPGA and DSP

Article Preview

Abstract:

Working on low-contrast, extended, time-varying objects such as the solar granulation, solar adaptive optics (AO) system uses correlation algorithms to detect image shift of the Shack-Hartmann (SH) wavefront sensor (WFS) instead of centroid algorithm in night-time adaptive optics system. An real-time image shift detection processor, which consists of a Xilinx FPGA and a TI DSP, has been developed for a low-order solar AO system based on cross correlation coefficient algorithm. Image shift of integer pixels can be calculated in the FPGA and DSP is responsible for parabolic interpolation to obtain subpixel accuracy. The experimental results show that the processor can obtain correct image shift and satisfy the time latency requirement of the AO system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

303-311

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Rimmele, T.R., Richards, K., Hegwer, S., Fletcher, S., Gregory, S., Moretto, G., Didkovsky, L.V., Denker, C.J., Dolgushin, A., Goode, P.R., Langlois, M., Marino, J. and Marquette, W., 2004, First results from the NSO/NJIT solar adaptive optics system, in Telescopes and Instrumentation for Solar Astrophysic, San Diego, CA, USA, 7 August 2003, (Eds. ) Fineschi, S., Gummin, M.A., vol. 5171 of Proc. SPIE, p.179.

DOI: 10.1117/12.508513

Google Scholar

[2] Hardy, J.W., 1980, Solar Imaging Experiment: Final Report, Feb. 1979 – Jun. 1980 , AFGL-TR- 80-0338, Air Force Geophysics Laboratory, Hanscom AFB, Lexington, MA. [ADS].

Google Scholar

[3] Acton, D.S. and Smithson, R.C., 1992, Solar imaging with a segmented adaptive mirror, Appl. Opt., 31, 3161–3169. [DOI], [ADS].

DOI: 10.1364/ao.31.003161

Google Scholar

[4] Rimmele, T.R., 2000, Solar adaptive optics, in Adaptive Optical Systems Technology, Munich, Germany, 29 March 2000, (Ed. ) Wizinowich, P.L., vol. 4007 of Proc. SPIE, p.218–231, SPIE, Bellingham, WA. [DOI], [ADS].

DOI: 10.1117/12.390301

Google Scholar

[5] Choi S, Nah J, Moon Y J, et al. Development of a correlation tracker system for the New Solar Telescope[C]/SPIE Astronomical Telescopes+ Instrumentation. International Society for Optics and Photonics, 2008: 701553-701553-8.

Google Scholar

[6] Berkefeld T, Soltau D, Schmidt D, et al. Adaptive optics development at the German solar telescopes[J]. Applied Optics, 2010, 49(31): G155-G166.

DOI: 10.1364/ao.49.00g155

Google Scholar

[7] Richards K. Adaptive optics real time processing design for the advanced technology solar telescope[C]/SPIE Astronomical Telescopes+ Instrumentation. International Society for Optics and Photonics, 2012: 84472N-84472N-9.

DOI: 10.1117/12.924910

Google Scholar

[8] Wagner J, Rimmele T R, Keil S, et al. Advanced technology solar telescope: a progress report[C]/Astronomical Telescopes and Instrumentation. International Society for Optics and Photonics, 2006: 626709-626709-19.

Google Scholar

[9] Zhu L, Gu N, Chen S, et al. Real time controller for 37-element low-order solar adaptive optics system at 1m new vacuum solar telescope[C]/6th International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT 2012). International Society for Optics and Photonics, 2012: 84150V-84150V-9.

DOI: 10.1117/12.977864

Google Scholar

[10] Hardy, J.W., 1998, Adaptive Optics for Astronomical Telescopes, vol. 16 of Oxford Series in Optical and Imaging Sciences, Oxford University Press, Oxford; New York.

Google Scholar

[11] Roddier, F. (Ed. ), 1999, Adaptive Optics in Astronomy, Cambridge University Press, Cambridge; New York. [ADS], [Google Books].

Google Scholar

[12] Tyson, R.K., 2011, Principles of Adaptive Optics, Series in Optics and Optoelectronics, CRC Press, Boca Raton, FL, 3rd edn. [Google Books].

Google Scholar

[13] Berkefeld, T., 2007, Solar adaptive optics, in Modern Solar Facilities – Advanced Solar Science, Proceedings of a Workshop held at G¨ottingen, Germany, September, 27 – 29, 2006, (Eds. )Kneer, F., Puschmann, K.G., Wittmann, A.D., p.107.

DOI: 10.17875/gup2007-96

Google Scholar

[14] Löfdahl M G. Evaluation of image-shift measurement algorithms for solar Shack-Hartmann wavefront sensors[J]. arXiv preprint arXiv: 1009. 3401, (2010).

DOI: 10.1051/0004-6361/201015331

Google Scholar

[15] Berkefeld T, Soltau D, Moro D, et al. Wavefront sensing and wavefront reconstruction for the 4 m European solar telescope EST[C]/Proc. SPIE. 2010, 7736: 77362J.

DOI: 10.1117/12.857580

Google Scholar

[16] Kinney E K, Richards K, Johnson L, et al. The wavefront correction control system for the advanced technology solar telescope[C]/Proc. of SPIE Vol. 2012, 8447: 84472M-1.

Google Scholar

[17] Dunn R B. NSO/SP adaptive optics program[C]/The Hague'90, 12-16 April. International Society for Optics and Photonics, 1990: 216-231.

Google Scholar

[18] Peng X, Li M, Rao C. A kind of FPGA-based correlating Shack-Hartmann wave-front processor[C]/Fourth International Symposium on Precision Mechanical Measurements. International Society for Optics and Photonics, 2008: 71303Z-71303Z-6.

DOI: 10.1117/12.819702

Google Scholar

[19] Peng X, Li M, Rao C. Architecture design of a FPGA-based wavefront processor for correlating a Shack-Hartmann sensor[C]/International Conference of Optical Instrument and Technology. International Society for Optics and Photonics, 2008: 71561B-71561B-8.

DOI: 10.1117/12.804777

Google Scholar

[20] Rao C, Jiang W, Ling N, et al. Correlation tracking algorithms for low-contrast extended object[C]/International Symposium on Optical Science and Technology. International Society for Optics and Photonics, 2002: 245-251.

Google Scholar