Strong Consistency of Maximum Likelihood Estimators in Compound-Sequential Logit Model

Article Preview

Abstract:

Compound-sequential logit models are extensions of the ordinary logistic regression model, which are designed for complex ordinal outcomes commonly seen in practice. In this paper, we prove strong consistency of the maximum likelihood estimator (MLE) of the regression parameter vector under some mild conditions. We relax the boundedness condition of the regressors required in most existing theoretical results, and all conditions are easy to verify.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

429-432

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Fahrmeir, H. Kaufmann. Statist Hefte, Vol. 27(1986), pp.179-205.

Google Scholar

[2] L. Fahrmeir, H. Kanfmann. Ann Statist, Vol. 13(1985), pp.342-368.

Google Scholar

[3] C.M. Yin, L.C. Zhao. Science in China, Ser. A. Vol. 48(2005), pp.1009-1014.

Google Scholar

[4] C. M. Yin, L. C. Zhao, C. D. Wei. Science in China Ser A, Vol. 48(2006), pp.145-157.

Google Scholar

[5] Q.B. Gao, J.G. Lin C.H. Zhu Y.H. Wu. Statistics. Vol. 46(2012), pp.833-846.

Google Scholar

[6] C.M. Yin, Z.F. Wang, H. Zhang. Statist Probab Lett, Vol. 85(2014), pp.135-143.

Google Scholar

[7] C. Mehta,N. Patel, A. TSiatis. Biometrics. Vol. 40(1984), pp.819-825.

Google Scholar

[8] DG. Tutz. Biometrical Journal. Vol. 31(1989), pp.259-272.

Google Scholar

[9] L. Fahrmeir, G. Tutz. Multivariate statistcal modelling based on generalized linear models, pp.63-95, New York: Springer-Verlag(1994).

DOI: 10.1007/978-1-4899-0010-4_3

Google Scholar