Strong Consistency of Maximum Likelihood Estimators in Sequential-Cumulative Logit Model

Article Preview

Abstract:

In this article, for the sequential-cumulative logit model, we show that maximum likelihood estimates of regression parameter vector is asymptotically existence and strongly consistent under mild conditions

You might also be interested in these eBooks

Info:

Periodical:

Pages:

445-448

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Fahrmeir, H. Kaufmann. Statist Hefte, Vol. 27(1986), pp.179-205.

Google Scholar

[2] L. Fahrmeir, H. Kanfmann. Ann Statist, Vol. 13(1985), pp.342-368.

Google Scholar

[3] C.M. Yin, L.C. Zhao. Science in China, Ser. A. Vol. 48(2005), pp.1009-1014.

Google Scholar

[4] C. M. Yin, L. C. Zhao, C. D. Wei. Science in China Ser A, Vol. 48(2006), pp.145-157.

Google Scholar

[5] Q.B. Gao, J.G. Lin C.H. Zhu Y.H. Wu. Statistics. Vol. 46(2012), pp.833-846.

Google Scholar

[6] C.M. Yin, Z.F. Wang, H. Zhang. Statist Probab Lett, Vol. 85(2014), pp.135-143.

Google Scholar

[7] C. Mehta,N. Patel, A. TSiatis. Biometrics. Vol. 40(1984), pp.819-825.

Google Scholar

[8] G. Tutz. Biometrical Journal. Vol. 31(1989), pp.259-272.

Google Scholar

[9] L. Fahrmeir, G. Tutz. Multivariate statistcal modelling based on generalized linear models, pp.63-95, New York: Springer-Verlag(1994).

DOI: 10.1007/978-1-4899-0010-4_3

Google Scholar