[1]
K.K. Tan, T.H. Lee, S. Huang. Precision Motion Control Design and Implementation. second ed., Springer, London, (2008).
Google Scholar
[2]
Z.J. Li, C.Y. Liu, F.W. Meng, et al. Precision motion control of permanent magnet linear synchronous motor servo system based on an integrated controller with inertia variation compensation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227 (2013).
DOI: 10.1177/0954406212459698
Google Scholar
[3]
H.W. Chow , C.C. Norbert. Disturbance and Response Time Improvement of Submicrometer Precision Linear Motion System by Using Modified Disturbance Compensator and Internal Model Reference Controls, IEEE Transactions on Industrial Electronics, 60 (2013).
DOI: 10.1109/tie.2012.2185015
Google Scholar
[4]
S. Cheng, C.W. Li. Fuzzy PDFF-IIR controller for PMSM drive systems[J]. Control Engineering Practice, 19 (2011) 828-835.
DOI: 10.1016/j.conengprac.2011.04.011
Google Scholar
[5]
G. Belforte, S. Mauro, G. Mattiazzo. A method for increasing the dynamic performance of pneumatic servo systems with digital valves. Mechatronics, 14 (2004) 1105-1120.
DOI: 10.1016/j.mechatronics.2004.06.006
Google Scholar
[6]
C.H. Lu, Y.R. Hwang, Y.T. Shen. Backstepping sliding-mode control for a pneumatic control system. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 224 (2010) 763-770.
DOI: 10.1243/09596518jsce992
Google Scholar
[7]
Y.H. Bai, X.N. Li. Improvement of the State Feedback Control for Pneumatic Position Servo System. Journal of Mechanical Engineering, 45 (2009) 101-105.
DOI: 10.3901/jme.2009.08.101
Google Scholar
[8]
C. de wit Canudas, H. Olsson, K.J. Astrom, et al. A new model for control of systems with friction. IEEE Transactions on Automatic Control, 40 (1995) 419-425.
DOI: 10.1109/9.376053
Google Scholar
[9]
Beater P. Pneumatic Drives: System Design, Modelling and Control. Springer-Verlag, Berlin Heidelberg, (2007).
Google Scholar
[10]
BS ISO 6358-1: 2013. Pneumatic fluid power — Determination of flow-rate characteristics of components using compressible fluids — Part 1: General rules and test methods for steady-state flow. 22-23.
DOI: 10.3403/30227645u
Google Scholar
[11]
H. Olsson. Control Systems with Friction. PhD Thesis, Lund Institute of Technology, Sweden, (1996).
Google Scholar
[12]
W. Susanto, R. Babuska, F. Liefhebber, et al. Adaptive Friction Compensation: Application to a Robotic Manipulator. In: Proceedings of the 17th World Congress for the International Federation of Automatic Control, Seoul, Korea, 6 July -11 July 2008, p.2020.
Google Scholar
[13]
Y. Wang, ZH.H. Xiong, H. Ding. Friction compensation design based on state observer and adaptive law for high-accuracy positioning system. Progress in Natural Science, 16 (2006) 147-152.
DOI: 10.1080/10020070612331343206
Google Scholar