Influence of Prestress on Axial Compressive Behavior of High-Strength Concrete-Filled FRP Tubes

Article Preview

Abstract:

This paper presents an experimental investigation on the influence of prestress on axial compressive behavior of concrete-filled fiber reinforced polymer (FRP) tubes (CFFTs). A total of 12 aramid FRP- (AFRP) confined high-strength concrete (HSC) specimens with circular cross-sections were tested under monotonic axial compression. All specimens were cylinders with 152 mm diameter and 305 mm height and their unconfined concrete strengths were approximately 100 to 110 MPa. The influence of FRP prestress was examined by applying 3 different levels of lateral prestress ranging from 4.29 to 7.27 MPa. In addition to the prestressed specimens, companion specimens with no applied prestress were manufactured and tested to establish reference values. Results of the experimental study indicate that the influence of prestress on compressive strength is significant, with an increase in ultimate strength observed in all prestressed specimens compared to that of non-prestressed specimens. On the other hand, the influence of prestress on axial strain was found to be minimal, with prestressed specimens displaying a slight decrease in ultimate strain, compared to their non-prestressed counterparts. The results also indicate that prestressing the AFRP shell prevents the sudden drop in strength, typically observed in FRP-confined HSC specimens, that initiates at the transition point which connects the first and second branches of the stress-strain curves.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-178

Citation:

Online since:

March 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ozbakkaloglu, T., Lim, J.C., and Vincent, T. (2013) FRP-confined concrete in circular sections: Review and assessment of the stress-strain models, Eng. Struct. 49: 1068-1088.

DOI: 10.1016/j.engstruct.2012.06.010

Google Scholar

[2] Ozbakkaloglu, T. and Lim, J.C. (2013) Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model, Compos. Part B. 55: 607 - 634.

DOI: 10.1016/j.compositesb.2013.07.025

Google Scholar

[3] Lim, J.C. and Ozbakkaloglu, T. (2014) Confinement model for FRP-confined high-strength concrete, ASCE, J. Compos. Constr. 18(4): 04013058.

DOI: 10.1061/(asce)cc.1943-5614.0000376

Google Scholar

[4] Karabinis, A.I. and Rousakis, T.C. (2002) Concrete confined by FRP material: a plasticity approach., Eng. Struct. 24(7): 923 - 932.

DOI: 10.1016/s0141-0296(02)00011-1

Google Scholar

[5] Ilki, A. and Kumbasar, N. (2003) Compressive behavior of carbon fiber composite jacketed concrete with circular and non-circular cross-sections, Earthquake Eng. 7(3): 381-406.

DOI: 10.1080/13632460309350455

Google Scholar

[6] Smith, S.T., Kim, S.J., and Zhang, H. (2010) Behavior and Effectiveness of FRP Wrap in the Confinement of Large Concrete Cylinders., ASCE J. Compos. Constr. 14: 573 - 582.

DOI: 10.1061/(asce)cc.1943-5614.0000119

Google Scholar

[7] Ozbakkaloglu, T. and Saatcioglu, M. (2007) Seismic performance of square high-strength concrete columns in FRP stay-in-place formwork, ASCE, J. Struct. Eng. 133(1): 44-56.

DOI: 10.1061/(asce)0733-9445(2007)133:1(44)

Google Scholar

[8] Ozbakkaloglu, T. and Akin, E. (2012) Behavior of FRP-confined normal- and high-strength concrete under cyclic axial compression, ASCE, J. Compos. Constr. 16(4): 451-463.

DOI: 10.1061/(asce)cc.1943-5614.0000273

Google Scholar

[9] Zohrevand, P. and Mirmiran, A. (2012) Behavior of ultra high-performance concrete confined by fiber-reinforced polymers, Mater. Civ. Eng. 23(12): 1727-1734.

DOI: 10.1061/(asce)mt.1943-5533.0000324

Google Scholar

[10] Idris, Y. and Ozbakkaloglu, T. (2013) Seismic behavior of high-strength concrete-filled FRP tube columns, ASCE, J. Compos. Constr. 17(6): 04013013.

DOI: 10.1061/(asce)cc.1943-5614.0000388

Google Scholar

[11] Ozbakkaloglu, T. (2013) Axial compressive behavior of square and rectangular high-strength concrete-filled FRP tubes, ASCE, J. Compos. Constr. 17(1): 151-161.

DOI: 10.1061/(asce)cc.1943-5614.0000321

Google Scholar

[12] Ozbakkaloglu, T. (2013) Behavior of square and rectangular ultra high-strength concrete-filled FRP tubes under axial compression, Compos. Part B. 54: 97-111.

DOI: 10.1016/j.compositesb.2013.05.007

Google Scholar

[13] Ozbakkaloglu, T. (2013) Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters, Eng. Struct. 51: 151-161.

DOI: 10.1016/j.engstruct.2013.01.017

Google Scholar

[14] Ozbakkaloglu, T. (2013) Concrete-filled FRP tubes: Manufacture and testing of new forms designed for improved performance, ASCE, J. Compos. Constr. 17(2): 280-291.

DOI: 10.1061/(asce)cc.1943-5614.0000334

Google Scholar

[15] Vincent, T. and Ozbakkaloglu, T. (2013) Influence of concrete strength and confinement method on axial compressive behavior of FRP-confined high- and ultra high-strength concrete, Compos. Part B. 50: 413-428.

DOI: 10.1016/j.compositesb.2013.02.017

Google Scholar

[16] Vincent, T. and Ozbakkaloglu, T. (2013) Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete, Constr. Build. Mater. 47: 814-826.

DOI: 10.1016/j.conbuildmat.2013.05.085

Google Scholar

[17] Lim, J.C. and Ozbakkaloglu, T. (2014) Hoop strains in FRP-confined concrete columns: experimental observations, Mater. Struct. DOI: 10. 1617/s11527-014-0358-8.

DOI: 10.1617/s11527-014-0358-8

Google Scholar

[18] Lim, J.C. and Ozbakkaloglu, T. (2014) Influence of silica fume on stress-strain behavior of FRP-confined HSC, Constr. Build. Mater. 63: 11-24.

DOI: 10.1016/j.conbuildmat.2014.03.044

Google Scholar

[19] Lim, J.C. and Ozbakkaloglu, T. (2014) Investigation of the Influence of Application Path of Confining Pressure: Tests on Actively Confined and FRP-Confined Concretes, ASCE, J. Struct. Eng. doi: 10. 1061/(ASCE)ST. 1943-541X. 0001177.

DOI: 10.1061/(asce)st.1943-541x.0001177

Google Scholar

[20] Lim, J.C. and Ozbakkaloglu, T. (2014) Lateral strain-to-axial strain relationship of confined concrete, ASCE, J. Struct. Eng. doi: 10. 1061/(ASCE)ST. 1943-541X. 0001094.

DOI: 10.1061/(asce)st.1943-541x.0001094

Google Scholar

[21] Ozbakkaloglu, T. and Vincent, T. (2014) Axial compressive behavior of circular high-strength concrete-filled FRP tubes, ASCE, J. Compos. Constr. 18(2): 04013037.

DOI: 10.1061/(asce)cc.1943-5614.0000410

Google Scholar

[22] Vincent, T. and Ozbakkaloglu, T. (2014) Influence of slenderness on stress-strain behavior of concrete-filled FRP tubes: an experimental study, ASCE, J. Compos. Constr. 10. 1061/(ASCE)CC. 1943-5614. 0000489, 04014029.

DOI: 10.1061/(asce)cc.1943-5614.0000489

Google Scholar

[23] Wong, Y.L., Yu, T., Teng, J.G., and Dong, S.L. (2008) Behavior of FRP-confined concrete in annular section columns, Compos. Part B. 39(3): 451-466.

DOI: 10.1016/j.compositesb.2007.04.001

Google Scholar

[24] Louk Fanggi, B. and Ozbakkaloglu, T. (2013) Compressive behavior of aramid FRP-HSC-steel double-skin tubular columns, Constr. Build. Mater. 48: 554-565.

DOI: 10.1016/j.conbuildmat.2013.07.029

Google Scholar

[25] Ozbakkaloglu, T. and Louk Fanggi, B. (2013) FRP-HSC-steel composite columns: behavior under monotonic and cyclic axial compression, Materials and Structures. doi: 10. 1617/s11527-013-0216-0.

DOI: 10.1617/s11527-013-0216-0

Google Scholar

[26] 26. Albitar, M., Ozbakkaloglu, T., and Louk Fanggi, B. (2014) Behavior of FRP-HSC-Steel double-skin tubular columns under cyclic axial compression, ASCE, J. Compos. Constr. DOI: 10. 1061/(ASCE)CC. 1943-5614. 0000510, 04014041.

DOI: 10.1061/(asce)cc.1943-5614.0000510

Google Scholar

[27] Idris, Y. and Ozbakkaloglu, T. (2014) Flexural behavior of FRP-HSC-steel composite beams, Thin-Walled Structures. 80: 207-216.

DOI: 10.1016/j.tws.2014.03.011

Google Scholar

[28] Ozbakkaloglu, T. and Idris, Y. (2014) Seismic behavior of FRP-high-strength concrete-steel double skin tubular columns, ASCE, J. Struct. Eng. 140(6): 04014019.

DOI: 10.1061/(asce)st.1943-541x.0000981

Google Scholar

[29] Ozbakkaloglu, T. and Louk Fanggi, B. (2014) Axial compressive behavior of FRP-concrete-steel double-skin tubular columns made of normal- and high-strength concrete, ASCE, J. Compos. Constr. 18(1), 04013027.

DOI: 10.1061/(asce)cc.1943-5614.0000401

Google Scholar

[30] Idris, Y. and Ozbakkaloglu, T. (2015) Flexural Behavior of FRP-HSC-Steel Double Skin Tubular Beams under Reversed-Cyclic Loading, Thin-Walled Structures. 87: 89-101.

DOI: 10.1016/j.tws.2014.11.003

Google Scholar