Optimizing Multi Response Green Machining Using Taguchi Method Based on Grey Relational Analysis

Article Preview

Abstract:

This paper presents an optimization of multi response green machining of aluminum 6061 valve. The research is started with study literature and early survey to identify various factors that may likely influence in the green machining. The next step is investigating and collecting experiment data of the control factors (working in 3 levels) for depth of cut, feeding, and cutting speed factor on two responses; power consumption and surface roughness (Ra). The data were evaluated using Taguchi method based on grey relational anaylisis. Statistic tools coupled together with Taguchi design to process the output of the experiment. Finally, the research has successfully to deliver knowledges of the cutting speed and feeding factors have a dominant influence in power consumption and surface roughness of the green machining process

You might also be interested in these eBooks

Info:

Periodical:

Pages:

277-281

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.D. Jayal, F. Badurdeen, O.W. Dillon, I.S. Jawahir, Sustainable manufacturing: modeling and optimization challenges at the product, process and system levels. CIRP J. Manuf. Sci and Techn. 2 (2010) 144-152.

DOI: 10.1016/j.cirpj.2010.03.006

Google Scholar

[2] S.T. Newman, A. Nassehi, R. Imani-Asrai, V. Dhokia, Energy efficient process planning for CNC machining, CIRP J. Manuf. Sci and Techn. 5 (2012) 127–136.

DOI: 10.1016/j.cirpj.2012.03.007

Google Scholar

[3] M. Helu, B. Behmann, H. Meier, D. Dornfeld, G. Lanza, V. Schulze, Impact of green machining strategies on achieved surface quality. CIRP Ann. Manuf. Techn. 61(1) (2012) 55-58.

DOI: 10.1016/j.cirp.2012.03.092

Google Scholar

[4] L. B. Abhang, M. Hameedullah, Determination of optimum parameters for multi-performance characteristics in turning by using grey relational analysis., Int. J. Adv. Manuf. Tech. 63(1-4), (2012) 13-24.

DOI: 10.1007/s00170-011-3857-6

Google Scholar

[5] I. Asiltrürk, S. Neseli, Multi response optimisation of CNC turning paramters via Taguchi method-based response surface analysis, Measurement. 45 (2012) 785-794.

DOI: 10.1016/j.measurement.2011.12.004

Google Scholar

[6] Z. A. Khan, A. N. Siddiquee, N. Z. Khan, U. Khan, G. A. Quadir, Multi response optimization of wire electrical discharge machining process parameters using Taguchi based grey relational analysis. Proc. Mater. Sci. 6 (2014) 1683-1695.

DOI: 10.1016/j.mspro.2014.07.154

Google Scholar

[7] C. Camposeco-Negrete, Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and Anova. J. Clean Prod. 53 (2013) 195-203.

DOI: 10.1016/j.jclepro.2013.03.049

Google Scholar

[8] I. Hanafi, A. Khamlichi, F. M. Cabrera, E. Almansa, A. Jabbouri, Optimization of cutting conditions for sustainable machining of PEEK-CF30 using TiN tools. J. Clean Prod.  33 (2012) 1-9.

DOI: 10.1016/j.jclepro.2012.05.005

Google Scholar

[9] G. Kant, K. S. Sangwan, Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining. J. Clean Prod. 83 (2014) 151-164.

DOI: 10.1016/j.jclepro.2014.07.073

Google Scholar

[10] C. J. Tzeng, Y. H. Lin, Y. K. Yang, M. C. Jeng, Optimization of turning operations with multiple performance characteristics using the Taguchi method and Grey relational analysis. J. Mater. Process. Tech. 209(6) (2009) 2753-2759.

DOI: 10.1016/j.jmatprotec.2008.06.046

Google Scholar