Preparation and Characterization of Ultrafine Monodisperse Iron Oxide Nanoparticles by Solvothermal Method

Article Preview

Abstract:

Using iron-oleate complex as a precursor, oleic acid as a stabilizer and 1-octadecene as a reductant, uniform-sized and highly monodisperse iron oxide nanoparitcles with different diameters were successfully synthesized via solvothermal method by changing reaction time. Transmission electron microscope (TEM), thermo-gravimetric analysis (TGA), fourier transform infrared spectroscopy (FT-IR), physical property measurement system (PPMS) and dynamic light scattering (DLS) was used to characterize obtained iron oxide nanoparticles. These results indicated that iron oxide nanoparitcles with the diameter ranging from 4 to 8 nm can be controllably synthesized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-96

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Z. Xiaohong Sun, Fuxiang Zhang, Yali Yang, Guangjun Wu, Aimin Yu, and Naijia Guan*, J. Phys. Chem. C 2009, 113, 16002–16008.

Google Scholar

[2] C. Fang, N. Bhattarai, C. Sun and M. Zhang, Small 2009, 5, 1637-1641.

Google Scholar

[3] M. Khajeh, Int. J. Environ. Anal. Chem. 2010, 89, 479-487.

Google Scholar

[4] T. D. V. Rogach A L, Shevchenko E V, et al., 12 2002, 12(10): 653-664., 10, 653-664.

Google Scholar

[5] X. C. Na Liu, Zhanfang Ma, Biosensors and Bioelectronics 2013, 48, 33-38.

Google Scholar

[6] M. R. Dzamukova, A. I. Zamaleeva, D. G. Ishmuchametova, Y. N. Osin, A. P. Kiyasov, D. K. Nurgaliev, O. N. Ilinskaya and R. F. Fakhrullin, Langmuir 2011, 27, 14386-14393.

DOI: 10.1021/la203839v

Google Scholar

[7] J. B. Mamani, A. J. Costa-Filho, D. R. Cornejo, E. D. Vieira and L. F. Gamarra, Materials Characterization 2013, 81, 28-36.

DOI: 10.1016/j.matchar.2013.04.001

Google Scholar

[8] J. Park, K. An, Y. Hwang, J. -G. Park, H. -J. Noh, J. -Y. Kim, J. -H. Park, N. -M. Hwang and T. Hyeon, Nature materials 2004, 3, 891-895.

DOI: 10.1038/nmat1251

Google Scholar

[9] B. H. Kim, N. Lee, H. Kim, K. An, Y. I. Park, Y. Choi, K. Shin, Y. Lee, S. G. Kwon, H. B. Na, J. -G. Park, T. -Y. Ahn, Y. -W. Kim, W. K. Moon, S. H. Choi and T. Hyeon, Journal of the American Chemical Society 2011, 133, 12624-12631.

DOI: 10.1021/ja203340u

Google Scholar

[10] L. Shen, P. E. Laibinis and T. A. Hatton, Langmuir 1999, 15, 447-453.

Google Scholar

[11] X. F. Zhang, S. Mansouri, L. Clime, H. Q. Ly, L. H. Yahia and T. Veres, Journal of Materials Chemistry 2012, 22, 14450-14457.

Google Scholar

[12] R. Chalasani and S. Vasudevan, Journal of Materials Chemistry 2012, 22, 14925-14931.

Google Scholar

[13] W. -W. Wang and J. -L. Yao, The Journal of Physical Chemistry C 2009, 113, 3070-3075.

Google Scholar