[1]
B.M. Matina, Y. Mortazavi, A. A. Khodadadi, A. Abbasia, A. A. Firooz, Alkaline-and template-free hydrothermal synthesis of stable SnO2 nanoparticles and nanorods for CO and ethanol gas sensing, Sensors and Actuators B 151 (2010) 140–145.
DOI: 10.1016/j.snb.2010.09.033
Google Scholar
[2]
M. Aziz, S. S. Abbas, W. Rosemaria, W. Baharom, Size-controlled synthesis of SnO2 nanoparticles by by sol-gel method, Mater. Lett. 91 (2013) 31–34.
DOI: 10.1016/j.matlet.2012.09.079
Google Scholar
[3]
A. S . Ahmed, S. M. Muhamed, M. L. Singla, S. Tabassum, A. H. Naqvi, A. Azam, Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles, J. Lumin. 131 (2011) 1–6.
DOI: 10.1016/j.jlumin.2010.07.017
Google Scholar
[4]
S. Sharma, J. Shah, R. K. Kotnala, and Santa Chawla, Red Upconversion Luminescence And Paramagnetism In Er/Yb Doped SnO2 , Electron. Mater. Lett. 9 (2013) 615-620.
DOI: 10.1007/s13391-013-2230-3
Google Scholar
[5]
S. Chen, M. Wang, J. Ye, J. Cai, Y. Ma, H. Zhou , and L. Qi, Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance, Nano. Res. 6 (2013), 243–252.
DOI: 10.1007/s12274-013-0300-3
Google Scholar
[6]
M. Wu, W. Zeng, Q. He, J. Zhang, Hydrothermal synthesis of SnO2 nanocorals, nanofragments and nanograss and their formaldehyde gas sensing properties, Mater. Sci. Semicond. Process. 16 (2013)1495–1501.
DOI: 10.1016/j.mssp.2013.04.016
Google Scholar
[7]
Y. Liu, J. Yang, W. Yang, T. Xie, Y. Bai, and T. Li, Influence of hydrothermal temperature on structures and photovoltaic properties of SnO2 nanoparticles, J. Nanopaer. Res. 2 (2000) 309–313.
Google Scholar
[8]
L. Jiang, G. Sun, Z. Zhou, S. Sun, Q. Wang, S. Yan, H. Li, J. Tian, J. Guo, B. Zhou, Q. Xin, Size-Controllable Synthesis of Monodispersed SnO2 nanoparticles and Application in Electrocatalysts, J. Phys. Chem. B. 109(2005), , 8774-8778.
DOI: 10.1021/jp050334g
Google Scholar
[9]
D. Varshney , K. Verma , Effect of stirring time on size and dielectric properties of SnO2 nanoparticles prepared by co-precipitation method, J. Mol. Struct. 1034 (2013) 216–222.
DOI: 10.1016/j.molstruc.2012.10.049
Google Scholar
[10]
N. Bajpai , S. A. Khan , R. S. Kher, N. Bramhe, S. J. Dhoble, A. Tiwari, Thermo luminescence investigation of sol-gel derived and γ-irradiated SnO2: Eu3+ nanoparticles, J. Lumin. 145 (2014) 940–943.
DOI: 10.1016/j.jlumin.2013.09.020
Google Scholar
[11]
N. S. Sabri, M. S. M. Deni, A. Zakaria, M. K. Talari, Effect of Mn Doping on Structural and Optical Properties of SnO2 Nanoparticles Prepared by Mechanochemical Processing, Phys. Procedia. 25 ( 2012 ) 233 – 239.
DOI: 10.1016/j.phpro.2012.03.077
Google Scholar
[12]
A.J. Haider ,S. S. Shaker ,A. H. Mohammed, A Study of Morphological, Optical and Gas Sensing Properties for Pure and Ag Doped SnO2 Prepared by Pulsed Laser Deposition (PLD), Energy Procedia. 36 ( 2013 ) 776 – 787.
DOI: 10.1016/j.egypro.2013.07.090
Google Scholar
[13]
M.M. Rashad , A. A. Ismail , I. Osama , I.A. Ibrahim, A. H. T. Kandil, Photocatalytic decomposition of dyes using ZnO doped SnO2 nanoparticles prepared by solvothermal method, Arabian J. Chem. 7 (2014) , 71–77.
DOI: 10.1016/j.arabjc.2013.08.016
Google Scholar
[14]
M. Wang, Y. Gao, L. Dai , C. Cao , X. Guo, Influence of surfactants on the morphology of SnO2 nanocrystals prepared via a hydrothermal method, J. Solid State. chem. 189 (2012) 49–56.
DOI: 10.1016/j.jssc.2012.01.021
Google Scholar
[15]
V. Bilovol , C. Herme , S. Jacobo , A.F. Cabrera , Study of magnetic behaviour of Fe-doped SnO2 powders prepared by chemical method, Mater. Che and Phys. 135 (2012) 334-339.
DOI: 10.1016/j.matchemphys.2012.04.055
Google Scholar
[16]
M. V. Vaishampayan, R. G. Deshmukh, P. Walke, I. S. Mulla, Fe-doped SnO2 nanomaterial: A low temperature hydrogen sulfide gas sensor, Mater. Che and Phys. 109 (2008) 230–234.
DOI: 10.1016/j.matchemphys.2007.11.024
Google Scholar
[17]
S. Sambasivam, B. C. Choi, J. G. Lin, Intrinsic magnetism in Fe doped SnO2 nanoparticles, J. Solid State Chem 184 (2011) 199–203.
DOI: 10.1016/j.jssc.2010.11.010
Google Scholar
[18]
S. Lenaerts, J. Roggen, G. Maes, FT-IR characterization of tin dioxide gas sensor materials under working conditions, Spectrochim. Acta. A 51 (1995) 883–894.
DOI: 10.1016/0584-8539(94)01216-4
Google Scholar