Modeling the Biaxial Behavior of Concrete by Damage Mechanics with Poisson’s Ratio Variable

Article Preview

Abstract:

A new model is introduced, for predicting the nonlinear behavior of the concrete until the rupture. The non-linear behavior of the concrete is taken into account under monotonic load verifying the principles of the mechanics damage [1] and the concepts of the mechanics of the fracture, using the foundations of the continuum mechanics of materials [2]. The nonlinear mechanical behavior of the concrete in unidirectional is described by two laws (Sargin [3] for the compression and Grelat [4] on the tension). By introducing two variables of damage applied in unidirectional respectively in tension and in compression (Y. Bouafia , R. Smahi, and al., (2014)) [5]. Their combination with the laws of the continuum mechanics of materials (Hooke’s low generalized) [2], and the theory of the mechanics damage (theory of the isotropy of the damage, and principle of the equivalent deformation), brings us to a law of variation of the damage in three-directional applied in bidirectional. In addition, if the variation of the Poisson’s ratio of concrete in unidirectional compression has attracted the interest of several researchers we can cites: (Sami, A., Klink, 1975 [6], Murray D.W. 1979 [7], Niels Saabye ottosen, (1980) [8], Atheel E. Allos., L.H.Martin, (1981) [9], Ramtani.S, Y. Berthaud , J. Mazars, (1992) [10] and Ferretti, E., (2004) [11]. For the three-dimensional, we can mention: Chen 1982 [12], Guo 1997 [13], Zhu 1998 [14], Hyuk-Chun Noh, Hyo-Gyoung Kwak 2006 [15] and Ding Faxing Yu Zhiwu 2006 [16]. Confrontations of the calculations with experimental results (behavior of the concrete in biaxial compression and tension) have allowed to describe and to follow the real behavior of the concrete.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

391-397

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Lemaitre, J.L. Chaboche, A. Benallal, R. Desmorat, Mechanics of solid materials (Mécanique des matériaux solides), Dunod, Paris, ISBN 978- 2 -10- 051623- 0. (2009).

DOI: 10.3917/dunod.lemai.2020.01.0315

Google Scholar

[2] P. Royis, Mechanics of continuous environment (Mécanique des milieux continus), Presses universitaires de Lyons, ISBN 2- 7297- 0770- 0 (ISSN 1765- 6389). ( 2005).

Google Scholar

[3] M. Sargin, Stress-Strain relationship for concrete and the analysis of structural concrete sections. Solid Mechanics division (University of waterloo Canada 1971).

Google Scholar

[4] A. Grelat, Non-linear behavior and stability of reinforced concrete frames (Comportement non linéaire et stabilité des ossatures en béton armé), Annales de l'I.T.B.T.P., N° 234 (1978).

Google Scholar

[5] Y. Bouafia , R. Smahi, H. Dumontet, M. S. Kachi, (2014), Modeling the Behavior of Concrete by Damage Mechanics with a Poisson's Ratio Variable. Procedia Materials Science. Volume 3, 2014, Pages 714–719. (20th European Conference on Fracture).

DOI: 10.1016/j.mspro.2014.06.117

Google Scholar

[6] S.A. Klink, Poisson's Ratio Variations in Concrete. In Experimental Mechanics, pp.139-141, (1975).

Google Scholar

[7] D.W. Murray, Octahedral based incremental stress-strain matrices. J. Eng. Mech. Div. ASCE, Vol. 105 EM4, PP 623-641. (1979).

Google Scholar

[8] N.S. Ottosen, Non linear finite element analysis of concrete structures, Riso- R- 411. National laboratory, Denmark. ISBN 87- 550- 0649-3. ISSN 0106- 2840. (1980).

Google Scholar

[9] E.A. Atheel, L.H. Martin, Factors Affecting Poisson's Ratio for Concrete. Building and Environment, Vol. 16, No. 1, pp.1-9. Pergamon press Ltd. Printed in Great Britain. (1981).

Google Scholar

[10] S. Ramtani, Y. Berthaud ,J. Mazars, Orthotropic behavior of concrete with directional aspects: modeling and experiments. Nuclear Engineering and Design 133(1992) 97-111. North- Holland.

DOI: 10.1016/0029-5493(92)90094-c

Google Scholar

[11] E. Ferretti, Poisson's ratio and volumetric strain in concrete. International Journal of Fracture, vol. 126, pp.49-55. (2004).

Google Scholar

[12] W.F. Chen, Plasticity in reinforced concrete, Mc Graw Hill, New York. (1982).

Google Scholar

[13] Z. Guo, Strength and Deformation of Concrete- Experimental Principles and Constitutive Law (Chinese Edition), Tsinghua University Press House, Beijing, P.R. China. (1997).

Google Scholar

[14] B. Zhu, The Finite Element Method Theory and Applications (Chinese Edition), The Water Resources Publishing House of China, Beijing, P.R. China. (1998).

Google Scholar

[15] H. Chun Noh , H. Gyoung Kwak, Response variability due to randomness in Poisson's ratio for plane-strain and plane-stress states. International Journal of Solids and Structures 43, (2006) 1093–1116.

DOI: 10.1016/j.ijsolstr.2005.03.072

Google Scholar

[16] D. Faxing, Y. Zhiwu,. Strength criterion for plain concrete under multiaxial stress based on damage Poisson's ratio. Acta Mechanica Solida Sinica, Vol. 19, No. 4, December (2006).

DOI: 10.1007/s10338-006-0637-1

Google Scholar

[17] BAEL, Technical Rules for calculating reinforced concrete structures following the limit state method, (Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états limites). Ed Eyrolles, p.309, France. (1991).

DOI: 10.51257/a-v1-c2314

Google Scholar

[18] J.M. Reynouard, G.P. Cabot, Mechanical behavior of concrete, (Comportement mécanique du béton). Publication Hermes science. LAVOISIER, 11, rue Lavoisier 75008 Paris. ISBN 2-7462-00980-2. (2005).

Google Scholar

[19] H. Kupfer, H.K. Hilsdorf, H. Rüsch, Behavior of concrete under biaxial stresses. Journal of the American Concrete Institute 66, 656– 666. (1969).

Google Scholar

[20] F. Hamon, J. Mazars, To model the 3D damage concrete under cyclic loading. (Modèle d'endommagement 3D Pour le béton sous chargement cyclique). XXXe Rencontres AUGC-IBPSA Chambéry, Savoie, 6 au 8 juin (2012).

Google Scholar

[21] J. Mazars, F. Hamon, S. Grange, A new 3D damage model for concrete under monotonic, cyclic and dynamic loadings. Materials and Structures ( 2014 ), DOI 10. 1617/s11527- 014- 0439- 8.

DOI: 10.1617/s11527-014-0439-8

Google Scholar