Batch Biosorption of Copper(II) by Sunflower Shell

Article Preview

Abstract:

In this manuscript, Cu (II) uptake by Sunflower Shell from aqueous solutions was investigated using batch biosorption techniques. The biosorption equilibrium studies were realized as a function of contact time, initial Cu (II) concentration, biosorbent dosage, pH, temperature, agitation rate and particle size. In addition, the mechanism of the Cu (II) removal was explained on the basis of the results of Fourier Transform Infrared (FTIR) spectroscopy. In order to gather information about the adsorption mechanism at various pHs, electrophoretic mobilites of particles were measured. The efficiency of Cu (II) ions uptake from aqueous solutions increased as pH, temperature and agitation rate of the solution increased, but decreased with the increase of biosorbent particle size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-69

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Kandah, F.A. Abu Al-Rub, N. Al-Dabaybeh, Competitive adsorption of copper-nickel and copper-cadmium binaries on SMW, Eng. Life Sci. 8 (2002) 237-43.

DOI: 10.1002/1618-2863(20020806)2:8<237::aid-elsc237>3.0.co;2-d

Google Scholar

[2] F.A. Abu Al-Rub, M.H. El-Naas, I. Ashour, M. Al-Marzouqi, Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions, Process Biochem. 41(2006) 457- 464.

DOI: 10.1016/j.procbio.2005.07.018

Google Scholar

[3] B. Volesky, Detoxification of metal-bearing effluents: biosorption for the next Century, Hydrometallurgy 59 (2001) 203-216.

DOI: 10.1016/s0304-386x(00)00160-2

Google Scholar

[4] P. Saha, S.S. Datta, K. Sanyal, Hazardous Waste Pollution Prevention Using Clay with admixture. J. Clean-air water soil. 36 (2) (2008) 230-238.

DOI: 10.1002/clen.200700086

Google Scholar

[5] J. Hasanur, D. Chakraborty, P. Saha, A Study of the Thermodynamics and Kinetics of Copper Adsorption Using Chemically Modified Rice Husk, Clean: Water, Air, & Soil, Wiley Publication. 37 (9) (2009) 704 -711.

DOI: 10.1002/clen.200900138

Google Scholar

[6] P. Saha, S. Datta, S. K. Sanyal, Application of Natural Clayey Soil as Adsorbent or the Removal of Copper from Wastewater, J. Environ. Eng. ASCE; DOI: 10. 1061/(ASCE)EE. 1943-7870. 0000289). (1943).

DOI: 10.1061/(asce)ee.1943-7870.0000289

Google Scholar

[7] E. Oguz, M. Ersoy, Removal of Cu2+ from aqueous solution by adsorption in a fixed bed column and Neural Network Modelling, Chem. Eng. J. 164 (2010) 56-62.

DOI: 10.1016/j.cej.2010.08.016

Google Scholar

[8] E. Oguz, M. Ersoy, Biosorption of cobalt(II) with sunflower biomass from aqueous solutions ina fixed bed column and neural Networks modelling, Ecotox. Environ. Safe. 99 (2014) 54-60.

DOI: 10.1016/j.ecoenv.2013.10.004

Google Scholar

[9] N. Khalid, A. Rahman, S. Ahmad, S.N. Kiani, J. Ahmad, Adsorption of cadmium from aqueous solutions on rice husk, Plant Soil. 197 (1998) 71-78.

DOI: 10.1524/ract.1998.83.3.157

Google Scholar

[10] Z.R. Holan, B. Volesky, Accumulation of cadmium, lead and nickel by fungal and wood biosorbents, Appl. Biochem. Biotech. 53 (1995) 133-146.

DOI: 10.1007/bf02788603

Google Scholar

[11] S. Al-Asheh, Z. Duvnjuk, Binary metal sorption by pine bark: study of equilibria and mechanisms, Sep. Sci. Technol. 33 (9) (1998) 1303-1329.

DOI: 10.1080/01496399808544985

Google Scholar

[12] S. Al-Asheh, G. Lamarche, Z. Duvnjuk, Investigation of copper sorption using plant materials, Water Quality Research Journal of Canada 33(1) (1998) 167-183.

DOI: 10.2166/wqrj.1998.010

Google Scholar

[13] Y. Nuhoglu, E. Oguz, Removal of copper (II) from aqueous solutions by biosorption on the cone biomass of Thuja orientalis, Process Biochem. 38 (2003) 1627-163.

DOI: 10.1016/s0032-9592(03)00055-4

Google Scholar

[14] N. Chubar, J.R. Carvalho, M. Joana, N. Correia, Cork biomass as biosorbent for Cu(II), Zn(II) and Ni(II), Colloid Surface A. 230 (2003) 57-65.

DOI: 10.1016/j.colsurfa.2003.09.014

Google Scholar

[15] C.R.T. Tarley, M.A.Z. Arruda, Biosorption of heavy metals using rice milling by-products. Characterization and application for removal of metals from aqueous effluents, Chemosphere 54 (2004) 987–995.

DOI: 10.1016/j.chemosphere.2003.09.001

Google Scholar

[16] M. Iqbal, R.G.J. Edyvean, Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium, Min Eng. 17 (2004) 217-223.

DOI: 10.1016/j.mineng.2003.08.014

Google Scholar

[17] G. Cetinkaya Donmez, Z. Aksu, A. Ozturk, T. Kutsal, A comparative study on heavy metal biosorption characteristics of some algae, Process Biochem. 34 (1999) 885-892.

DOI: 10.1016/s0032-9592(99)00005-9

Google Scholar

[18] E. Susan Bailey, J. Trudy Olin, R. Mark Bricka, D. Dean Adrian, A review of potentially low-cost sorbents for heavy metals, Water Res. 33 (11) (1999) 2469-2479.

DOI: 10.1016/s0043-1354(98)00475-8

Google Scholar

[19] M. Ajmal, A.H. Khan, S. Ahmad, A. Ahmad, Role of sawdust in the removal of copper(II) from industrial wastes, Water Res. 32 (1998) 3088-3091.

DOI: 10.1016/s0043-1354(98)00067-0

Google Scholar

[20] R. Belcher, D. Gibbons, T.S. West, The Determination of copper by complexometric titration with ethylenediaminetetraacetic acid, Analitica Chimica Acta. 13 (1955) 226-229.

DOI: 10.1016/s0003-2670(00)87932-5

Google Scholar

[21] M. Asmal, A.H. Khan, S. Ahmad, Cole of sawdust in the removal of Copper (II) from industrial wastes, Water Res. 32(10) (1998) 3085-3091.

DOI: 10.1016/s0043-1354(98)00067-0

Google Scholar

[22] U. Forstner, G.T.W. Wittmann, Metal pollution in the aquatic environment. Berlin, Heidelberg, New York, Springer. 211(1981).

Google Scholar