[1]
W. Yin, W. Wang, L. Zhou, S. Sun, L. Zhang, CTAB–assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible–light irradiation, J. Hazard. Mater. 173 (2010) 194–199.
DOI: 10.1016/j.jhazmat.2009.08.068
Google Scholar
[2]
H. Jiang, H. Dai, X. Meng, K. Ji, L. Zhang, J. Deng, Porous olive–like BiVO4: Alcoho–hydrothermal preparation and excellent visible–light–driven photocatalytic performance for the degradation of phenol, Appl. Catal. B: Environ. 105 (2011) 326–334.
DOI: 10.1016/j.apcatb.2011.04.026
Google Scholar
[3]
S. Obregón, G. Colón, On the different photocatalytic performance of BiVO4 catalysts for methylene blue and rhodamine B degradation, J. Mol. Catal. A–Chem. 376 (2013) 40–47.
DOI: 10.1016/j.molcata.2013.04.012
Google Scholar
[4]
M. Xie, L. Jing, J. Zhou, J. Lin, H. Fu, Synthesis of nanocrystalline anatase TiO2 by one–pot two–phase separated hydrolysis–solvothermal processes and its high activity for photocatalytic degradation of rhodamine B, J. Hazard. Mater. 176 (2010).
DOI: 10.1016/j.jhazmat.2009.11.008
Google Scholar
[5]
M. Cui, S. Tian, H. Zhao, R. Jin, Y. Chen, B. Liu, H. Yang, Solvothermal synthesis and enhanced photocatalytic activity of flowerlike nanoarchitectures assembled from anatase TiO2 nanoflakes, Physica E 44 (2012) 2110–2117.
DOI: 10.1016/j.physe.2012.06.025
Google Scholar
[6]
G. Tan, L. Zhang, H. Ren, S. Wei, J. Huang, A. Xia, Effects of pH on the hierarchical structures and photocatalytic performance of BiVO4 powders prepared via the microwave hydrothermal method, ACS. Appl. Mater. Interf. 5 (2013) 5186−5193.
DOI: 10.1021/am401019m
Google Scholar
[7]
F. He, J. Li, T. Li, G. Li, Solvothermal synthesis of mesoporous TiO2: The effect of morphology, size and calcination progress on photocatalytic activity in the degradation of gaseous benzene, Chem. Eng. J. 237 (2014) 312–321.
DOI: 10.1016/j.cej.2013.10.028
Google Scholar
[8]
N. Wetchakun, S. Chaiwichain, B. Inceesungyorn, K. Pingmuang, S. Phanichphant, A.I. Minett, J. Chen, BiVO4/CeO2 nanocomposites with high visible–light–induced photocatalytic activity, ACS. Appl. Mater. Interf. 4(7) (2012) 3718–3723.
DOI: 10.1021/am300812n
Google Scholar
[9]
P. Pookmanee, I. Phiwchai, S. Yoriya, R. Puntharod, S. Sangsrichan, J. Kitikul, S. Phanichphant, The photocatalytic degradation of methomyl over TiO2 nanopowder prepared by the low temperature solvothermal route, Mater. Sci. Forum 804 (2013).
DOI: 10.4028/www.scientific.net/msf.804.209
Google Scholar
[10]
F. Sayilkan, M. Asiltürk, S. Erdemoğlu, M. Akarsu, H. Sayilkan, M. Erdemoğlu, E. Arpaç, Characterization and photocatalytic properties of TiO2–nanosols synthesized by hydrothermal process at low temperature, Mater. Lett. 60 (2006) 230–235.
DOI: 10.1016/j.matlet.2005.08.023
Google Scholar
[11]
D.S. Kim, S. –Y. Kwak, The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity, Appl. Catal. A–Gen. 323 (2007) 110–118.
DOI: 10.1016/j.apcata.2007.02.010
Google Scholar