Photocatalytic Degradation of Methylene Blue and Methyl Orange over TiO2 Powder Synthesized via the Solvothermal Method

Article Preview

Abstract:

Titanium dioxide (TiO2) powder was synthesized via the solvothermal method. Titanium isopropoxide (C12H28O4Ti), ammonium hydroxide (NH4OH) and nitric acid (HNO3) were used as the starting materials. The mixed solution was diluted with ethanol (C2H5OH) and heated at 100°C for 5h in a Teflon–lined stainless steel autoclave vessel. The phase transition of TiO2 powder was studied by X–ray diffraction (XRD). The morphology and chemical composition of TiO2 powder were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The photocatalytic degradation of methylene blue and methyl orange over TiO2 powder were determined using Ultraviolet–visible spectroscopy (UV–Vis).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-55

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Yin, W. Wang, L. Zhou, S. Sun, L. Zhang, CTAB–assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible–light irradiation, J. Hazard. Mater. 173 (2010) 194–199.

DOI: 10.1016/j.jhazmat.2009.08.068

Google Scholar

[2] H. Jiang, H. Dai, X. Meng, K. Ji, L. Zhang, J. Deng, Porous olive–like BiVO4: Alcoho–hydrothermal preparation and excellent visible–light–driven photocatalytic performance for the degradation of phenol, Appl. Catal. B: Environ. 105 (2011) 326–334.

DOI: 10.1016/j.apcatb.2011.04.026

Google Scholar

[3] S. Obregón, G. Colón, On the different photocatalytic performance of BiVO4 catalysts for methylene blue and rhodamine B degradation, J. Mol. Catal. A–Chem. 376 (2013) 40–47.

DOI: 10.1016/j.molcata.2013.04.012

Google Scholar

[4] M. Xie, L. Jing, J. Zhou, J. Lin, H. Fu, Synthesis of nanocrystalline anatase TiO2 by one–pot two–phase separated hydrolysis–solvothermal processes and its high activity for photocatalytic degradation of rhodamine B, J. Hazard. Mater. 176 (2010).

DOI: 10.1016/j.jhazmat.2009.11.008

Google Scholar

[5] M. Cui, S. Tian, H. Zhao, R. Jin, Y. Chen, B. Liu, H. Yang, Solvothermal synthesis and enhanced photocatalytic activity of flowerlike nanoarchitectures assembled from anatase TiO2 nanoflakes, Physica E 44 (2012) 2110–2117.

DOI: 10.1016/j.physe.2012.06.025

Google Scholar

[6] G. Tan, L. Zhang, H. Ren, S. Wei, J. Huang, A. Xia, Effects of pH on the hierarchical structures and photocatalytic performance of BiVO4 powders prepared via the microwave hydrothermal method, ACS. Appl. Mater. Interf. 5 (2013) 5186−5193.

DOI: 10.1021/am401019m

Google Scholar

[7] F. He, J. Li, T. Li, G. Li, Solvothermal synthesis of mesoporous TiO2: The effect of morphology, size and calcination progress on photocatalytic activity in the degradation of gaseous benzene, Chem. Eng. J. 237 (2014) 312–321.

DOI: 10.1016/j.cej.2013.10.028

Google Scholar

[8] N. Wetchakun, S. Chaiwichain, B. Inceesungyorn, K. Pingmuang, S. Phanichphant, A.I. Minett, J. Chen, BiVO4/CeO2 nanocomposites with high visible–light–induced photocatalytic activity, ACS. Appl. Mater. Interf. 4(7) (2012) 3718–3723.

DOI: 10.1021/am300812n

Google Scholar

[9] P. Pookmanee, I. Phiwchai, S. Yoriya, R. Puntharod, S. Sangsrichan, J. Kitikul, S. Phanichphant, The photocatalytic degradation of methomyl over TiO2 nanopowder prepared by the low temperature solvothermal route, Mater. Sci. Forum 804 (2013).

DOI: 10.4028/www.scientific.net/msf.804.209

Google Scholar

[10] F. Sayilkan, M. Asiltürk, S. Erdemoğlu, M. Akarsu, H. Sayilkan, M. Erdemoğlu, E. Arpaç, Characterization and photocatalytic properties of TiO2–nanosols synthesized by hydrothermal process at low temperature, Mater. Lett. 60 (2006) 230–235.

DOI: 10.1016/j.matlet.2005.08.023

Google Scholar

[11] D.S. Kim, S. –Y. Kwak, The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity, Appl. Catal. A–Gen. 323 (2007) 110–118.

DOI: 10.1016/j.apcata.2007.02.010

Google Scholar