[1]
P. Chingombe, B. Saha, R. J. Wakeman, Surface modification and characterisation of a coal-based activated carbon, Carbon 43 (2005) 3132-3143.
DOI: 10.1016/j.carbon.2005.06.021
Google Scholar
[2]
Y. Sudaryanto, S. B. Hartono, W. Irawaty, H. Hindarso, S. Ismadji, High surface area activated carbon prepared from cassava peel by chemical activation, Bioresou. Technol. 97 (2006) 734-739.
DOI: 10.1016/j.biortech.2005.04.029
Google Scholar
[3]
C. Y. Yin, M. Aroua, W. M. A. W. Daud, Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions, Sep. Purif. Technol. 52 (2007) 403-415.
DOI: 10.1016/j.seppur.2006.06.009
Google Scholar
[4]
A. E. Aksoylu, M. Madalena, A. Freitas, M. F. R. Pereira, J. L. Figueiredo, The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts, Carbon 39 (2001) 175-185.
DOI: 10.1016/s0008-6223(00)00102-0
Google Scholar
[5]
F. Rodríguez-Reinoso, The role of carbon materials in heterogeneous catalysis, Carbon 36 (1998) 159-175.
DOI: 10.1016/s0008-6223(97)00173-5
Google Scholar
[6]
M. J. Martin, A. Artola, M. D. Balaguer, M. Rigola, Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions, Chem. Eng. J. 94 (2003) 231-239.
DOI: 10.1016/s1385-8947(03)00054-8
Google Scholar
[7]
J. P. Chen, S. Wu, K. -H. Chong, Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption, Carbon 41 (2003) 1979-(1986).
DOI: 10.1016/s0008-6223(03)00197-0
Google Scholar
[8]
B. S. Girgis, A. A. Attia, N. A. Fathy, Modification in adsorption characteristics of activated carbon produced by H3PO4 under flowing gases, Colloids Surf., A 299 (2007) 79-87.
DOI: 10.1016/j.colsurfa.2006.11.024
Google Scholar
[9]
C. A. Leon y Leon, J. M. Solar, V. Calemma, L. R. Radovic, Evidence for the protonation of basal plane sites on carbon, Carbon 30 (1992) 797-811.
DOI: 10.1016/0008-6223(92)90164-r
Google Scholar
[10]
G. M. Walker, L. R. Weatherley, Adsorption of acid dyes on to granular activated carbon in fixed beds, Chem. Eng. J. 75, 1999, 201.
Google Scholar
[11]
C. Y. Yin, M. K. Aroua, W. M. A. W. Daud, Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions, Sep. Purif. Technol. 52 (2007) 403-415.
DOI: 10.1016/j.seppur.2006.06.009
Google Scholar
[12]
I. -Y. Jeon, Y. -R. Shin, G. -J. Sohn, H. -J. Choi, S. -Y. Bae, J. Mahmood, S. -M. Jung, J. -M. Seo, M. -J. Kim, D. W. Chang, L. Dai, J. -B. Baek, Edge-carboxylated graphene nanosheets via ball milling, Proc. Natl. Acad. Sci. U.S.A. 109 (2012).
DOI: 10.1073/pnas.1116897109
Google Scholar
[13]
I. -Y. Jeon, H. -J. Choi, S. -M. Jung, J. -M. Seo, M. -J. Kim, L. Dai, J. -B. Baek, Large-Scale Production of Edge-Selectively Functionalized Graphene Nanoplatelets via Ball Milling and Their Use as Metal-Free Electrocatalysts for Oxygen Reduction Reaction, J. Am. Chem. Soc. 135 (2013).
DOI: 10.1021/ja3091643
Google Scholar
[14]
M. T. Buelow, A. J. Gellman, The transition state for metal-catalyzed dehalogenation: CI bond cleavage on Ag (111), J. Am. Chem. Soc. 123 (2001) 1440-1448.
DOI: 10.1021/ja002819i
Google Scholar