[1]
G. Choudhry, K. Olie and O. Hutzinger, Chlorinated dioxins and related compounds-impact on the environment, Pergamon press, New York, (1982).
DOI: 10.1016/b978-0-08-026256-7.50030-1
Google Scholar
[2]
R. Addink and K. Olie, Mechanisms of formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans in heterogeneous systems, Environmental Science & Technology 29 (1995) 1425-1435.
DOI: 10.1021/es00006a002
Google Scholar
[3]
M. Gordon, Dioxin characterization, formation and minimization during municipal solid waste (MSW) incineration: review, Chemical Engineering Journal 86 (2002) 343-368.
DOI: 10.1016/s1385-8947(01)00228-5
Google Scholar
[4]
B.R. Stanmore, The formation of dioxins in combustion systems, Combustion and Flame 136 (2004) 398-427.
DOI: 10.1016/j.combustflame.2003.11.004
Google Scholar
[5]
B.K. Gullett, K.R. Bruce, L.O. Beach and A.M. Drago, Mechanistic steps in the production of PCDD during waste combustion, Chemosphere 25 (1992) 1387-1392.
DOI: 10.1016/0045-6535(92)90158-n
Google Scholar
[6]
H. Ismo, T. Kari and R. Juhani, Formation of aromatic chlorinated compounds catalyzed by copper and iron, Chemosphere 34 (1997) 2649-2662.
DOI: 10.1016/s0045-6535(97)00109-4
Google Scholar
[7]
T. Hatanaka, A. Kitajima and M. Takeuchi, Role of copper chloride in the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during incineration, Chemosphere 57 (2004) 73-79.
DOI: 10.1016/j.chemosphere.2004.04.058
Google Scholar
[8]
C.Z. Van Doorn and D.J. Schipper, Luminescence of O2-, Mn2+ and Fe3+ in sodalite, Physics Letters 34A (1971) 139-140.
DOI: 10.1016/0375-9601(71)90792-4
Google Scholar
[9]
P.T. Bolwijn, D.J. Schipper and C.Z. Van Doorn, Cathodrochromic properties of sodalite, Journal of Applied Physics 43 (1972) 132-137.
DOI: 10.1063/1.1660796
Google Scholar
[10]
D.J. Schipper, T.W. Lathouwers and C.Z. Van Doorn, Thermal decomposition of sodalites, Journal of The American Ceramics Society 56 (1973) 523-525.
DOI: 10.1111/j.1151-2916.1973.tb12402.x
Google Scholar
[11]
S. Fujita, K. Suzuki, M. Ohkawa, T. Mori, Y. Iida, Y. Miwa, H. Masuda and S. Shimada, Oxidative destruction of hydrocarbons on a new zeolite-like crystal of Ca12Al10Si4O35 including O2- and O22- radicals, Chemistry of Materials 15 (2003) 255-263.
DOI: 10.1002/chin.200312021
Google Scholar
[12]
S. Fujita, M. Ohkawa, K. Suzuki, H. Nakano, T. Mori and H. Masuda, Controlling the quantity of radical oxygen occluded in a new aluminum silicate with nanopores, Chemistry of Materials 15 (2003) 4879-4881.
DOI: 10.1021/cm030562s
Google Scholar
[13]
S. Fujita, K. Suzuki, T. Mori and H. Masuda, Preparation of aluminum silicate, Ca12Al10Si4O35, using waste materials and its activity for combustion of hydrocarbons, Journal of the European Ceramic Society 25 (2005) 3479-3484.
DOI: 10.1016/j.jeurceramsoc.2004.09.031
Google Scholar