Model Study of Partial Structural Decomposition of Thaumasite

Article Preview

Abstract:

The DFT method was used for modeling a partial decomposition of the structure of the thaumasite mineral. The four models with a consecutive decreasing of water content were prepared (T12 – 100 %, T9 – 75 %, T6 – 50 %, T3 – 25 %) and corresponding decomposition enthalpies were calculated. The results showed a good agreement with available experimental data for the decomposition reaction of the thaumasite structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-12

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Skalny, J. Marchand and I. Odler, Sulfate Attack on Concrete, E&FN Spon, London, New York, Sections 4, 5 & 8, (2002).

Google Scholar

[2] K.L. Scrivener and R.J. Kirkpatrick, Innovation in use and research on cementitious material, Cem. Concr. Res. 38 (2008) 128-136.

Google Scholar

[3] J. Skibsted and C. Hall, Characterization of cement minerals, cements and their reaction products at the atomic and nano scale Cem. Concr. Res. 38 (2008) 205-225.

DOI: 10.1016/j.cemconres.2007.09.010

Google Scholar

[4] M. Drábik, D. Tunega, , S. Balkovic and V.S. Fajnor, Computer simulations of hydrogen bonds for better understanding of the data of thermal analysis of thaumasite J. Therm. Anal. Calorim. 85 (2006) 469-475.

DOI: 10.1007/s10973-005-7236-0

Google Scholar

[5] A.G. Kalinichev, J. Wang and R.J. Kirckpatrick, Molecular dynamics simulation of cationic complexation with natural organic matter Cem. Concr. Res. 37 (2007) 337-347.

Google Scholar

[6] W. Sun, D. Wang and L. Wang, Molecular Dynamic Simulation of Failure of Ettringite, Journal of Physics: Conference Series 419 (2013) 012011.

DOI: 10.1088/1742-6596/419/1/012011

Google Scholar

[7] E. Scholtzová, L. Kucková, J. Kožíšek, D. Tunega and H. Pálková, Experimental and computational study of thaumasite structure, Cem. Concr. Res. 59 (2014) 66-72.

DOI: 10.1016/j.cemconres.2014.02.002

Google Scholar

[8] M. Drábik, Ľ. Gáliková, E. Scholtzová and E. Hadzimová, Thermoanalytical events and enthalpies of selected phases and systems of the chemistry and technology of concrete. Part I. : Calcium-silicate-aluminate-sulphate hydrates, Silicates (2014).

Google Scholar

[9] G. Kresse and J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys Rev B48 (1993) 13115–13118.

DOI: 10.1103/physrevb.48.13115

Google Scholar

[10] G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mater. Sci. 6 (1996) 15–50.

DOI: 10.1016/0927-0256(96)00008-0

Google Scholar

[11] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[12] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953–17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[13] G. Kresse and J. Joubert, From ultrasoft potentials to the projector augmented wave method, Phys. Rev. B 59 (1999) 1758–1775.

DOI: 10.1103/physrevb.59.1758

Google Scholar

[14] S. V. Alapati, J. K. Johnson and D. S. Sholl, Identification of destabilized metal hydrides for hydrogen storage using first principles calculations, J. Phys. Chem. B 110 (2006) 8769-8776.

DOI: 10.1021/jp060482m

Google Scholar

[15] P. Kersten and G. Berggren, J., The thermal decomposition of thaumasite from Mothae kimberlite pipe, Lesotho, Southern Africa, Therm. Anal. Calorim. 9 (1976) 23-28.

DOI: 10.1007/bf01909260

Google Scholar