[1]
T. Weller, Etude des symétries et modèles de plaques en piézoélectricité linéarisé, Thèse, Université Montpellier 2, (2004).
Google Scholar
[2]
G. Geymonat, T. Weller, Classes de symétrie des solides piézoélectriques, Comptes Rendus Mathématiques, 335 (2002) 847-852.
DOI: 10.1016/s1631-073x(02)02573-6
Google Scholar
[3]
T. Weller, G. Geymonat, Piezomagnetic tensors symmetries: an unifying tentative approach, in: V.K. Kalpakides, G.A. Maugin (Eds. ), Configurational Mechanics, A.A. Balkema Publishers, 2004, pp.87-105.
DOI: 10.1201/b17002-8
Google Scholar
[4]
C. Licht, T. Weller, Asymptotic modeling of thin piezoelectric plates, Annals of Solid and Structural Mechanics, 1 (2010) 173-188.
DOI: 10.1007/s12356-010-0013-1
Google Scholar
[5]
T. Weller, C. Licht, Modeling of linearly electromagnetoelastic thin plates, C. R. Mécanique 335 (2007) 201-206.
DOI: 10.1016/j.crme.2007.03.009
Google Scholar
[6]
T. Weller, C. Licht, Asymptotic Modeling of linearly piezoelectric slender rods, C. R. Mécanique 336 (2008) 572-577.
DOI: 10.1016/j.crme.2008.05.004
Google Scholar
[7]
C. Licht, Asymptotic Modeling of Thin Linearly Piezoelectric Plates taking into account Dynamical Electro-Magnetic Effects, International Conference on Mathematical Analysis and Its Applications ICMAA 2006, Bangkok, Thailand, 20-24 May (2006).
Google Scholar
[8]
T. Weller, C. Licht, Asymptotic Modeling of piezoelectric plates with electric field gradient, C. R. Mécanique 340 (2012) 405-410.
DOI: 10.1016/j.crme.2012.02.020
Google Scholar
[9]
C. Licht, S. Orankitjaroen, P. Viriyasrisuwattana, T. Weller, Bonding a linearly piezoelectric patch on a linearly elastic body, C. R. Mécanique 342 (2014) 234-239.
DOI: 10.1016/j.crme.2014.01.003
Google Scholar
[10]
T. Weller, C. Licht, Asymptotic modeling of thin linearly quasicrystalline plates, C. R. Mécanique 341 (2013) 793-798.
DOI: 10.1016/j.crme.2013.10.002
Google Scholar