[1]
J. Shimomura, Y. Nakano, S. Ueda, J. Tateishi, N. Hiro, T. Tani, Development of V-modified 21/4 ~3Cr-1Mo Steels for high temperature service, in: L. Cengdian (Eds. ), Proceedings, 6th International Conference on Pressure Vessel Technology, Vol. 2, Pergamon, Oxford, 1989, pp.1013-1020.
DOI: 10.1016/b978-1-4832-8430-9.50100-3
Google Scholar
[2]
API RP 941, Steels for Hydrogen Service at Elevated Temperatures and Pressures in Petroleum Refineries and Petrochemical Plants, American Petroleum Institute, Washington D C, (2008).
Google Scholar
[3]
J. Shimomura, Y. Nakano, S. Nakano, S. Ueda, Disbonding of Overlay Weldment in V-modified 21/4Cr-1Mo Steels, Tetsu-to-Hagane, 75 (1989) 798-805.
DOI: 10.2355/tetsutohagane1955.75.5_798
Google Scholar
[4]
Y. Hiroshi, M. Shogo, F. Nobuyuki, S. Tomohiko, Y. Masato, S. Tadamichi, Long-term Isothermal Aging Behaviors of V Modified 2. 25Cr-1Mo Steels, Tetsu-to-Hagane, 91 (2005) 888-896.
DOI: 10.2355/tetsutohagane1955.91.12_888
Google Scholar
[5]
T. Koreaki, S. Jippei, Recent Japanese Researchers on Reheat Cracking of Steel Welds, Research reports of the Faculty of Engineering, Mie Univ., 11 (1986) 95-122.
Google Scholar
[6]
C. F. Meitzner, Stress-Relief Cracking in Steel Weldment, WRC Bulletin 211, New York, (1975).
Google Scholar
[7]
A. Dhooge, A. Vinckier, Reheat cracking-A review of recent studies, International Journal of Pressure Vessels and Piping, 27 (1987) 239-269.
DOI: 10.1016/0308-0161(87)90012-3
Google Scholar
[8]
API TR 934B, 2011, Fabrication Considerations for Vanadium-Modified Cr-Mo Steel Heavy Wall Pressure Vessels, American Petroleum Institute, Washington D C, April (2011).
Google Scholar
[9]
C. Chauvy, S. Pillot, Prevention of Weld Metal Reheat Cracking during Cr-Mo-V Heavy Reactors Fabrication, Proceedings of the ASME 2009 Pressure Vessels and Piping Division Conference, PVP2009-78144, Prague, Czech Republic, (2009).
DOI: 10.1115/pvp2009-78144
Google Scholar
[10]
S. Pillot, C. Chauvy, Standard Procedure to Test 21/4Cr-1Mo-V SAW Filler Material Reheat Cracking Susceptibility, Proceedings of the ASME 2012 Pressure Vessels and Piping Division Conference, PVP2012-78030, Toronto, CANADA, (2012).
DOI: 10.1115/pvp2012-78030
Google Scholar
[11]
Z.D. Liu, J. Chen, H.Q. Bu, X.D. Chen, Development of 2. 25Cr-1Mo-0. 25V Steel Hydrogenator and Some Problems on the Fabrication, Pres. Ves. Tech., 28 (2011) 33-40.
Google Scholar
[12]
R. R. Li, P.J. Li, Z.B. Ai, Site Inspection and Cause Analysis of Defects for Hydrogenation Reactor in Service (2) - The Cracks Defects and Material Degradation of Reactor Outside Wall, Pres. Ves. Tech., 26 (2009) 39-46.
Google Scholar
[13]
C. D. Lundin, J. A. Henning, R. Menon, J. A. Todd, Postweld Heat Treatment Cracking in Chromium-Molybdenum Steels, WRC Bulletin 349, New York, (1989).
Google Scholar
[14]
C. D. Lundin, K. K. Khan, Fundamental Studies of the Metallurgical Causes and Mitigation of Reheat Cracking in 11/4Cr-1/2Mo and 21/4Cr-1Mo steels, WRC Bulletin 409, New York, (1996).
Google Scholar
[15]
T. Shinya, Y. Tomita, Effect of Calcium Treatments and Strain Rate on Reheat Cracking of Vanadium-Modified 2. 25Cr-1Mo Steel, Materials Characterization, 40 (1998) 221-225.
DOI: 10.1016/s1044-5803(98)00017-5
Google Scholar
[16]
A. Dhooge, R. E. Dolby, J. Sebille, R. Steinmetz, A.G. Vinckier, A review of work related to reheat cracking in nuclear reactor pressure vessel steels, Int. J. Pres. Ves. & Piping, 6 (1978) 329-409.
DOI: 10.1016/0308-0161(78)90023-6
Google Scholar
[17]
Y. Adonyi, Heat-Affected Zone Characterization by Physical Simulations, Welding Journal, 10 (2006) 42-47.
Google Scholar
[18]
A. Dhooge, J. Vekeman, New generation 21/4Cr steels T/P 23 and T/P 24 weldability and high temperature properties, Welding in the World, 49 (2005) 75-93.
DOI: 10.1007/bf03266492
Google Scholar
[19]
T. Koreaki, S. Jippei, N. Yoshimoto, T. Makoto, Effect of carbides on reheat cracking sensitivity: Study of reheat cracking of Cr-Mo steels, Trans. Japan Welding Soc., 15 (1984) 8-16.
Google Scholar
[20]
C. A. Hippsley, J. F. Knott, B. C. Edwards, A study of stress relief cracking in 21/4Cr-1Mo steels. II: The effect of multi-component segregation, Acta Metallurgica, 30 (1982) 641-654.
DOI: 10.1016/0001-6160(82)90113-4
Google Scholar
[21]
C. J. Middleton, Reheat cracking nucleation and nucleation control in bainitic creep-resisting low-alloy steels: Roles of manganese sulphide, residual, and sulphur-stabilizing elements, Metal Science, 15 (1981) 154-167.
DOI: 10.1179/030634581790426679
Google Scholar