[1]
J.R. Benjamin, N.C. Lind, A Probabilistic Basis for a Deterministic Code, ACI Journal, Nov. (1969) 857-865.
Google Scholar
[2]
J.T. Fong, Uncertainties in Fatigue Life Prediction and a Rational Definition of Safety Factors, Nuclear Engineering Design, 51 (1978) 45-54.
DOI: 10.1016/0029-5493(78)90196-6
Google Scholar
[3]
R.B. Abernethy, J.E. Breneman, C.H. Medlin and G.L. Reinman, Weibull Analysis Handbook, Report No. AFWAL-TR-83-2079, Nov. 1983, a contractor's report by Pratt & Whitney Aircraft, United Technologies Corp., West Palm Beach, FL 33402. Alexandria, VA 22312: National Technical Information Service, info@ntis. gov (1983).
DOI: 10.21236/ada143100
Google Scholar
[4]
Anon., MIL-HDBK-17/1 Revision F (Volume 1 of 5): Guidelines for Characterization of Structural Materials, Chapter 8 (Statistical Methods). U.S. Department of Defense, http: /mil-17. udel. edu/ (2002).
Google Scholar
[5]
ASTM, Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics, ASTM Designation: C1239-07, Committee C28 on Advanced Ceramics, reapproved 2008, ASTM International, West Conshohocken, PA, 19428-2959 (2007).
DOI: 10.1520/c1239-95
Google Scholar
[6]
J.B. Quinn and G.D. Quinn, A practical and systematic review of Weibull statistics for reporting strengths of dental materials, Dental Materials, 26 (2010) 135-147.
DOI: 10.1016/j.dental.2009.09.006
Google Scholar
[7]
C. Forbes, M. Evans, N. Hastings and B. Peacock, Statistical Distributions, 4th ed. Wiley (2011).
Google Scholar
[8]
J.J. Burke and V. Weiss, eds., Risk and Failure Analysis for Improved Performance and Reliability, Proc. 24th Sagamore Army Materials Research Conf., Lake George, NY, Aug. 21-26, 1977. Plenum Press, New York (1980).
Google Scholar
[9]
E.G. Frankel, Systems Reliability and Risk Analysis. Martinus Nijhoff Publishers, The Hague (1984).
Google Scholar
[10]
M.G. Stewart and R.E. Melchers, Probabilistic Risk Assessment of Engineering Systems. Chapman and Hall (1997).
Google Scholar
[11]
T. Bedford and R. Cooke, Probabilistic Risk Analysis: Foundations and Methods. Cambridge University Press (2001).
Google Scholar
[12]
B.M. Ayyub, Risk Analysis in Engineering and Economics. Chapman & Hall/CRC (2003).
Google Scholar
[13]
K.B. Klaassen and J.C.L. van Peppen, System Reliability: Concepts and Applications. VSSD, Leeghwaterstraat 42, 2628 CA Delft, The Netherlands (2008).
Google Scholar
[14]
J.T. Fong, S.R. Gosselin, P.V. Marcal, J.J. Filliben, N.A. Heckert and R.E. Chapman, A Risk-Uncertainty Formula Accounting for Uncertainties of Failure Probability and Consequence in a Nuclear Powerplant, Proc. ASME Pressure Vessels & Piping Conf., July 18-22 (2010).
DOI: 10.1115/pvp2010-25168
Google Scholar
[15]
G. Norris and M. Wagner, Boeing 787 Dreamliner. Minneapolis, MN 55401: MBI Publishing Company, Zenith Press (2009).
Google Scholar
[16]
J.T. Fong, N.A. Heckert, J.J. Filliben, P.V. Marcal and S.W. Freiman, A New Approach to Defining a Risk-Informed Structural Design Safety Factor, a manuscript to be submitted to a technical journal (2014).
DOI: 10.4028/www.scientific.net/amm.750.3
Google Scholar
[17]
J.T. Fong, N.A. Heckert, J.J. Filliben, P.V. Marcal and S.W. Freiman, A Multiple-Goodness-of-Fit Approach to Model Selection for Material Strength Test Data, a manuscript to be submitted to a technical journal (2014).
Google Scholar
[18]
G.J. Hahn and W.Q. Meeker, Statistical Intervals: A Guide for Practitioners. Wiley (1991).
Google Scholar
[19]
M.G. Natrella, Experimental Statistics, National Bureau of Standards Handbook 91 (issued Aug. 1, 1963, reprinted with corrections Oct. 1966), pages 1-14, 1-15, 2-13 to 2-15, Tables A-6 and A-7. Washington, DC 20402: Superintendent of Documents, U.S. Government Printing Office (1966).
Google Scholar
[20]
P.R. Nelson, M. Coffin and K.A.F. Copeland, Introductory Statistics for Engineering Experimentation, Academic Press (2003).
Google Scholar
[21]
C. Croarkin, W. Guthrie, N.A. Heckert, J.J. Filliben, P. Tobias, J. Prins, C. Zey, B. Hembree and Trutna, eds., 2003, NIST/SEMATECH e-Handbook of Statistical Methods, http: /www. itl. nist. gov/div898/handbook/, first issued, June 1, 2003, and last updated July 18, 2006. Produced jointly by the Statistical Engineering Division of the National Institute of Standards & Technology, Gaithersburg, MD, and the Statistical Methods Group of SEMITECH, Austin, TX. Also available as a NIST Interagency Report in a CD-ROM upon request to alan. heckert@nist. gov (2006).
DOI: 10.6028/jres.101.068
Google Scholar
[22]
J.J. Filliben and N.A. Heckert, Dataplot: A Statistical Data Analysis Software System, National Institute of Standards & Technology, Gaithersburg, MD 20899 (2002), http: /www. itl. nist. gov/div898/software/dataplot. html.
Google Scholar
[23]
A.C. Cohen and B.J. Whitten, Parameter Estimation in Reliability and Life Span Models. Marcel Dekker (1988).
Google Scholar
[24]
J. Aldrich, R.A. Fisher, the Making of Maximum Likelihood 1912–1922, Statistical Science, Vol. 12, No. 3 (1997) 162-176.
DOI: 10.1214/ss/1030037906
Google Scholar
[25]
Jr. A.C. Cohen, Maximum Likelihood Estimation in the Weibull Distribution Based on Complete and on Censored Samples, Technometrics, 7 (1965) 579-588.
DOI: 10.1080/00401706.1965.10490300
Google Scholar
[26]
A.C. Cohen, B.J. Whitten and Y. Ding, Modified moment estimation for the three-parameter Weibull distribution, J. Qual. Tech., 16 (1984) 159-167.
DOI: 10.1080/00224065.1984.11978908
Google Scholar
[27]
J.J. Filliben, The Probability Plot Correlation Coefficient Test for Normality, Technometrics, Vol. 17, No. 1 (1975) 111-117.
DOI: 10.1080/00401706.1975.10489279
Google Scholar
[28]
S.H. Zanakis, Monte Carlo study of some simple estimators of the three-parameter Weibull distribution, J. Statist. Comp. Simulation, 9 (1979) 101-116.
DOI: 10.1080/00949657908810302
Google Scholar
[29]
J. Wyckoff, L. Bain and M. Engelhardt, Some complete and censored sampling results for the three-parameter Weibull distribution, J. Statist. Comp. Simulation, 11 (1980) 139-151.
DOI: 10.1080/00949658008810399
Google Scholar
[30]
J.F. Lawless, Statistical Models and Methods for Lifetime Data, 2nd ed. Wiley (2003).
Google Scholar
[31]
K. Bury, Statistical Distributions in Engineering. Cambridge University Press (1999).
Google Scholar
[32]
H. Rinne, The Weibull Distribution: A Handbook. Chapman & Hall/CRC (2009).
Google Scholar
[33]
J.I. McCool, Using the Weibull Distribution: Reliability, Modeling, and Inference. Wiley (2012).
Google Scholar
[34]
B. Efron, Bootstrap methods: another look at the jackknife, Ann. Statist., 7 (1979) 1-26.
DOI: 10.1214/aos/1176344552
Google Scholar
[35]
B. Efron and R.J. Tibshirani, An Introduction to the Bootstrap. Chapman & Hall (1993).
Google Scholar
[36]
A.C. Davison and D.V. Hinkley, Bootstrap Methods and Their Application. Cambridge University Press (1997).
Google Scholar
[37]
K.P. Burnham and D.R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed. Springer (2002).
Google Scholar
[38]
T.W. Anderson and D.A. Darling, Asymptotic Theory of Certain Goodness of Fit, Criteria based on Stochastic Processes, Annals Math. Statistics, 23 (1952) 193-212.
DOI: 10.1214/aoms/1177729437
Google Scholar
[39]
T.W. Anderson and D.A. Darling, A Test of Goodness of Fit, Journal of the American Statistical Association, 49 (1954) 765-769.
DOI: 10.1080/01621459.1954.10501232
Google Scholar
[40]
A. Kolmogorov, Sulla Determinazione Empirica di una Legge di Distribuzione, Giornale dell' Instituto Italiano degli Attuari, 4 (1933) 83-91.
Google Scholar
[41]
N. Smirnov, Table for Estimating the Goodness of Fit of Empirical Distributions, Annals of Mathematical Statistics, 19 (1948) 279-281.
DOI: 10.1214/aoms/1177730256
Google Scholar
[42]
Jr. F.J. Massey, The Kolmogorov-Smirnov Test for Goodness of Fit, Journal of the American Statistical Association, 46 (1951) 68-78.
DOI: 10.1080/01621459.1951.10500769
Google Scholar
[43]
Z.W. Birnbaum, Numerical Tabulation of the Distribution of Kolmogorov Statistic for Finite Sample Size, Journal of American Statistical Association, 47 (1952) 425-441.
DOI: 10.1080/01621459.1952.10501182
Google Scholar
[44]
H. Akaike, Information theory as an extension of the maximum likelihood principle, in Second International Symposium on Information Theory, Akademiai Kiado, Budepest, B. N. Petrov, and F. Csaki (Eds. ), (1973) 267-281.
Google Scholar
[45]
H. Akaike, A New Look at the Statistical Model Identification, IEEE Transactions on Automatic Control, Vol. 19, No. 6 (1974) 716-723.
DOI: 10.1109/tac.1974.1100705
Google Scholar
[46]
N. Sugiura, Further analysis of the data by Akaike's information criterion and the finite correction, Communications in Statistics, Theory and Methods, A7 (1978) 13-26.
DOI: 10.1080/03610927808827599
Google Scholar
[47]
H. Akaike, A Bayesian analysis of the minimum AIC procedure, Annals of the Institute of Statistical Mathematics, 30 (1978) 9-14.
DOI: 10.1007/bf02480194
Google Scholar
[48]
H. Akaike, A Bayesian extension of the8minimum AIC procedure of autoregressive model fitting, Biometrika, 66 (1979) 237-242.
DOI: 10.1093/biomet/66.2.237
Google Scholar
[49]
S.W. Looney and Jr. T.R. Gulledge, Use of the correlation coefficient with normal probability plots, Amer. Stat., Vol. 39, No. 1 (1985) 75-79.
DOI: 10.1080/00031305.1985.10479395
Google Scholar
[50]
S.W. Freiman, Jr. E.R. Fuller, J.B. Quinn, G.D. Quinn and W.C. Carter, Laboratory notes on constant stress-rate biaxial flexural tests of borosilicate crown glass BK-7 discs for predicting time-to-failure, 1993, private communication with Jeffrey Fong, NIST, Gaithersburg, Maryland, 20899-8910 (2009).
Google Scholar
[51]
NRIM, Data Sheets on the Elevated Temperature Properties of High Strength Steel (Class 590 MPa) Plates for Pressure Vessels, NRIM Creep Data Sheet, Second Revised (No. 25B), 30 September 1994. Tokyo: National Research Institute for Metals (1994).
Google Scholar
[52]
S.F. Duffy, L.M. Powers and A. Starlingou, Reliability Analysis of Structural Ceramic Components Using a Three-Parameter Weibull Distribution, in Proc. 37th Int. Gas Turbine and Aeroengine Congress (1992).
DOI: 10.1115/92-gt-296
Google Scholar
[53]
G.D. Quinn, Notes on aluminum oxide (Al2O3) strength data, private communication with Stephen W. Freiman, NIST, Gaithersburg, Maryland, 20899-8910 (2013).
Google Scholar
[54]
W. Weibull, A statistical theory of the strength of material, Ingeniors Vetenskaps Akademiens Handigar Report, 151, Stockholm (1939).
Google Scholar
[55]
W. Weibull, The phenomenon of rupture in solids, Ingeniors Vetenskaps Akademiens Handigar Report, 153, Stockholm (1939).
Google Scholar
[56]
W. Weibull, A statistical representation of fatigue failures in solids, Kungliga Tekniska Hogskolans Handigar (Royal Institute of Technology) Report 27, Stockholm (1949).
Google Scholar
[57]
W. Weibull, A statistical distribution function of wide applicability, Journal of Applied Mechanics, 18 (1951) 293-297.
DOI: 10.1115/1.4010337
Google Scholar
[58]
W. Weibull, Statistical design of fatigue experiments, Journal of Applied Mechanics, 19 (1952) 109-113.
Google Scholar
[59]
J.T. Fong, N.A. Heckert, J.J. Filliben, P.V. Marcal and S.W. Freiman, A New Approach to Defining a Risk-Informed Structural Fatigue Life Safety Factor, a manuscript to be submitted to a technical journal, (2014).
Google Scholar
[60]
G.J. DeSalvo, Theory and Structural Design Applications of Weibull Statistics, Westinghouse Astronuclear Laboratory Report No. WANL-TME-2688, May 1970. Pittsburgh, PA 15236: Westinghouse Corp. (1970).
DOI: 10.2172/4227416
Google Scholar
[61]
J.W. Heavens and P.N. Murgatroyd, Analysis of Brittle Fracture Stress Statistics, Journal of the American Ceramic Society, Vol. 53, No. 9 (1971) 503-505.
DOI: 10.1111/j.1151-2916.1970.tb16000.x
Google Scholar
[62]
S.M. Wiederhorn, Jr. E.R. Fuller, J. Mandel and A.G. Evans, An Error Analysis of Failure Prediction Techniques Derived from Fracture Mechanics, J. Am. Ceram. Soc., Vol. 59, No. 9-10, (1976) 403-411.
DOI: 10.1111/j.1151-2916.1976.tb09506.x
Google Scholar
[63]
J.T. Fong, R.G. Rehm and E.L. Graminski, Weibull Statistics and a Microscopic Degradation Model of Paper, TAPPI, Vol. 60, No. 1 (1977) 156-159.
Google Scholar
[64]
A. De S. Jayatilaka and K. Trustrum, Statistical approach to brittle fracture, J. Materials Sci., 12 (1977) 1426-1430.
DOI: 10.1007/bf00540858
Google Scholar
[65]
K. Trustrum and A. De S. Jayatilaka, Applicability of Weibull analysis for brittle materials, J. Materials Sci., 18 (1983) 2765-2770.
DOI: 10.1007/bf00547593
Google Scholar
[66]
J.T. Fong and J.J. Filliben, A Data Analysis Methodology as applied to the Pressure Vessel Research Council (PVRC) Round Robin Nondestructive Evaluation (NDE) Flaw Detection Validation Program, Proc. ASME NDE Engineering Division Symposium during PVP Division Conference, Portland, Oregon, July 1986, ASME spec. pub. NDE-1, (1986).
DOI: 10.6028/nbs.ir.86-3368
Google Scholar
[67]
C.A. Johnson and W.T. Tucker, Advanced Statistical Concepts of Fracture in Brittle Materials, Engineered Materials Handbook, Vol. 4, Ceramics and Glasses, S. R. Lampman, M. S. Woods, and T. B. Zorc, Eds., pp.710-715. Materials Park, OH 44073-0002: ASM International, memberservicecenter@asminternational. org (1991).
Google Scholar
[68]
R. Danzer, A General Strength Distribution Function for Brittle Materials, J. European Ceramic Society, 10 (1992) 461-472.
DOI: 10.1016/0955-2219(92)90021-5
Google Scholar
[69]
S.F. Duffy, L.M. Powers and A. Starlingou, Reliability Analysis of Structural Ceramic Components Using a Three-Parameter Weibull Distribution, in Proc. 37th Int. Gas Turbine and Aeroengine Congress (1992).
DOI: 10.1115/92-gt-296
Google Scholar
[70]
Jr. E.R. Fuller, S.W. Freiman, J.B. Quinn, G.D. Quinn and W.C. Carter, Fracture mechanics approach to the design of glass aircraft windows: a case study, Proc. Conf., SPIE – The International Society for Optical Engineering, 26-28 July 1994, San Diego, CA, Vol. 2286, pp.419-430 (1994).
DOI: 10.1117/12.187363
Google Scholar
[71]
N. Orlovskaja, H. Peterlik, M. Marczewski and K. Kromp, The validity of Weibull estimators – experimental verification, Journal of Materials Science, 32 (1997) 1903-(1907).
DOI: 10.1023/a:1018521310570
Google Scholar
[72]
R.V. Curtis and A.S. Juszczyk, Analysis of strength data using two- and three-parameter Weibull models, Journal of Materials Science, 33 (1998) 1151-1157.
DOI: 10.1023/a:1004361222711
Google Scholar
[73]
C. Lu, R. Danzer and F.D. Fischer, Fracture statistics of brittle materials: Weibull or normal distribution, Physical Review E, 65 (2002) 067102.
DOI: 10.1103/physreve.65.067102
Google Scholar
[74]
S. Nakamura, S. Tanaka, Z. Kato and K. Uematsu, Strength-Processing Defects Relationship Based on Micrographic Analysis and Fracture Mechanics in Alumina Ceramics, J. Am. Ceram. Soc., Vol. 92, No. 3 (2009) 688-693.
DOI: 10.1111/j.1551-2916.2008.02904.x
Google Scholar