Numerical Prediction of Creep Crack Growth Rate in Cr-Mo-V Steel for Specimens with Different Constraints

Article Preview

Abstract:

The creep crack growth rate in Cr-Mo-V steel has been numerically predicted for specimens with different constraints for a wide range of C* by using stress dependent creep model and ductility, and the simulated da/dt-C* curves were compared and analyzed with experimental data. The results show that the simulated da/dt-C* curves agree well with experimental data. At low and transition C* regions, the crack-tip constraint has obvious effect on CCG rates, while at high C* region it almost has no effect. With increasing constraint, the CCG rates and transition region size on da/dt-C* curves increase due to higher stress traxiality ahead of crack tip and stress-regime dependent creep ductility. If the extrapolation CCG rate data of standard high constraint CT specimen from high C* region (above the turning point 2) or from transition C* region are used in life assessments of the components with various constraints at low C* region (below the turning point 1), the non-conservative or excessive conservative results may be produced. Therefore, the CCG rate data for considering constraint effect should be obtained for a wide range of C* by long-term laboratory tests or numerical predictions using the stress dependent creep model and ductility.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-40

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.H. Dodds, J.C.F. Shih, T.L. Anderson, Continuum and micromechanics treatment of constraint in fracture, Int J Fract. 64 (1993) 101-33.

DOI: 10.1007/bf00016693

Google Scholar

[2] K.M. Nikbin, D.J. Smith, G.A. Webster, Prediction of creep crack growth from uniaxial creep data. Proce R Soc London. Ser A 396 (1984) 183-197.

DOI: 10.1098/rspa.1984.0116

Google Scholar

[3] K.M. Nikbin, D.J. Smith, G.A. Webster, An engineering approach to the prediction of creep crack growth, J Eng Mater Tech 108 (1986) 186-191.

DOI: 10.1115/1.3225859

Google Scholar

[4] K.M. Nikbin, Justification for meso-scale modelling in quantifying constraint during creep crack growth, Mater Sci Eng A. 365 (2004) 107-113.

DOI: 10.1016/j.msea.2003.09.014

Google Scholar

[5] G.A. Webster, R.A. Ainsworth, High temperature component life assessment. London, Chapman and Hall, (1994).

Google Scholar

[6] M. Yatomi, N.P. O'Dowd, K.M. Nikbin, G.A. Webster, Theoretical and numerical modelling of creep crack growth in a carbon-manganese steel, Eng Fract Mech. 73 (2006) 1158-1175.

DOI: 10.1016/j.engfracmech.2005.12.012

Google Scholar

[7] M. Tabuchi, K. Kubo, K. Yagi, Effect of specimen size on creep crack growth rate using ultra-large CT specimens for 1Cr-Mo-V steel, Eng Fract Mech. 40 (1991) 311-321.

DOI: 10.1016/0013-7944(91)90266-4

Google Scholar

[8] N.H. Kim, C.S. Oh, Y.J. Kim, C.M. Davies, K.M. Nikbin, D.W. Dean, Creep failure simulations of 316H at 550℃: Part II – Effects of specimen geometry and loading mode, Eng. Fract. Mech. 150 (2013) 169-181.

DOI: 10.1016/j.engfracmech.2013.04.001

Google Scholar

[9] J.P. Tan, S.T. Tu, G.Z. Wang, F.Z. Xuan, Effect and mechanism of out-of-plane constraint on creep crack growth behavior of a Cr-Mo-V steel, Eng. Fract. Mech. 99 (2013) 324-334.

DOI: 10.1016/j.engfracmech.2013.01.017

Google Scholar

[10] A. Mehmanparast, C.M. Davies, G.A. Webster, K.M. Nikbin, Creep crack growth rate predictions in 316H steel using stress dependent creep ductility, Materil. at High Temp. 31 (2014) 84-94.

DOI: 10.1179/0960340913z.00000000011

Google Scholar

[11] J.W. Zhang, G.Z. Wang, F.Z. Xuan, S.T. Tu, Effects of stress-regime dependent creep model and ductility on creep crack growth rate, Eng. Fract. Mech. 2014, submitted.

DOI: 10.1016/j.matdes.2014.09.070

Google Scholar

[12] J.W. Zhang, G.Z. Wang, F.Z. Xuan, S.T. Tu, Effect of stress dependent creep ductility on creep crack growth behavior of steels for wide range of C*, Materil. at High Temp. 2014, submitted.

DOI: 10.1179/1878641314y.0000000027

Google Scholar

[13] J.P. Tan, G.Z. Wang, F.Z. Xuan, S.T. Tu, Creep crack growth in a Cr-Mo-V type steel: experimental observation and prediction, Acta Metall. Sin. (Engl. Lett. ) 2011, 81-91.

Google Scholar

[14] M. Yatomi, K.M. Nikbin, N.P. O'Dowd, Creep crack growth prediction using a damage based approach, Int J Pressure Vessels Piping. 80 (2003) 573-583.

DOI: 10.1016/s0308-0161(03)00110-8

Google Scholar

[15] M. Yatomi, M. Tabuchi, Issues relating to numerical modelling of creep crack growth, Eng. Frac. Mech. 77 (2010) 3043-3052.

DOI: 10.1016/j.engfracmech.2010.04.024

Google Scholar

[16] C.S. Oh, N.H. Kim, Y.J. Kim, C. Davies, K.M. Nikbin, D. Dean, Creep failure simulations of 316H at 550℃: Part I – A method and validation, Eng Frac Mech 78 (2011) 2966-2977.

DOI: 10.1016/j.engfracmech.2011.08.015

Google Scholar

[17] Hibbitt, Karlsson & Sorensen. ABAQUS User's Manual, Version 6. 10, (2011).

Google Scholar

[18] M.W. Spindler, The multiaxial creep ductility of austenitic stainless steels, Fatigue Frac Eng Mater Struc. 27 (2004) 273-81.

DOI: 10.1111/j.1460-2695.2004.00732.x

Google Scholar

[19] M.J. Manjoine, Creep-rupture behavior of weldments, Weld J. 1982, 50-57.

Google Scholar

[20] J.R. Rice, D.M. Tracey, On ductile enlargement of voids in traxial stress fields, J. Mech. Phys. Solids. 17 (1969) 201-17.

DOI: 10.1016/0022-5096(69)90033-7

Google Scholar

[21] A.F. Cocks, M.F. Ashby, Intergranular fracture during power-law creep under multiaxial stresses, Metal. Sci. 36 (1980) 237-49.

DOI: 10.1179/030634580790441187

Google Scholar

[22] ASTM E 1457. Standard test method for measurement of creep crack growth rates in metals. Annual Book of ASTM Standards 2001, pp, 945-966.

Google Scholar

[23] J.P. Tan, G.Z. Wang, F.Z. Xuan, S.T. Tu, Z.D. Wang, Effect of the out-of-plane constraint on creep crack growth property of Cr-Mo-V type steel, In: Proceedings of the ASME 2011 Pressure Vessels and Piping Conference. Maryland, USA, 2011. (PVP2011-57300).

DOI: 10.1115/pvp2011-57300

Google Scholar

[24] J.P. Tan, G.Z. Wang, F.Z. Xuan, S.T. Tu, Experimental investigation of in-plane constraint and out-of-plane constraint effects on creep crack growth, In: Proceedings of the ASME 2012 Pressure Vessels and Piping Conference. Ontario, Canada, 2012. (PVP2012-78478).

DOI: 10.1115/pvp2012-78478

Google Scholar

[25] J.P. Tan, Creep life assessment of structures containing crack incorporating constraint effect, Doctoral dissertation, East China University of Science and Technology, (2014).

Google Scholar

[26] R. Hales, The role of cavity growth mechanisms in determining creep-rupture under multiaxial stresses, Fatigue Fract. Eng. Mater. Struct. 17 (1994) 579-591.

DOI: 10.1111/j.1460-2695.1994.tb00257.x

Google Scholar