[1]
A. Mujumdar, A. N. Beris and A. B. Metzner: Transient phenomena in thixotropic systems. Journal of Non-Newtonian Fluid Mechanics Vol. 102. 2 (2002), pp.157-178.
DOI: 10.1016/s0377-0257(01)00176-8
Google Scholar
[2]
J. Mewis and N. J. Wagner: Thixotropy. Advances in Colloid and Interface Science Vol. 147 (2009), pp.214-227.
DOI: 10.1016/j.cis.2008.09.005
Google Scholar
[3]
H. A. Barnes: Thixotropy—a review. Journal of Non-Newtonian Fluid Mechanics Vol. 70. 1 (1997), pp.1-33.
Google Scholar
[4]
C. Zhu and J. E. Smay: Thixotropic rheology of concentrated alumina colloidal gels for solid freeform fabrication. Journal of Rheology (1978-present) Vol. 55(3) (2011), pp.655-672.
DOI: 10.1122/1.3573828
Google Scholar
[5]
H. A. Ardakani, E. Mitsoulis and S. G. Hatzikiriakos: Thixotropic flow of toothpaste through extrusion dies. Journal of Non-Newtonian Fluid Mechanics Vol. 166. 21 (2011), pp.1262-1271.
DOI: 10.1016/j.jnnfm.2011.08.004
Google Scholar
[6]
J. Šesták, R. Žitný and M. Houška: Simple rheological models of food liquids for process design and quality assessment. Journal of Food Engineering Vol. 2. 1 (1983), pp.35-49.
DOI: 10.1016/0260-8774(83)90005-5
Google Scholar
[7]
D. C. H. Cheng and F. Evans: Phenomenological characterization of the rheological behaviour of inelastic reversible thixotropic and antithixotropic fluids. British Journal of Applied Physics Vol. 16. 11 (1965), p.1599.
DOI: 10.1088/0508-3443/16/11/301
Google Scholar
[8]
F. Moore: The rheology of ceramic slips and bodies. Trans. Br. Ceram. Soc Vol. 58 (1959), pp.470-494.
Google Scholar
[9]
P. Coussot, A. I. Leonov and J. M. Piau: Rheology of concentrated dispersed systems in a low molecular weight matrix. Journal of Non-Newtonian Fluid Mechanics Vol. 46. 2 (1993), pp.179-217.
DOI: 10.1016/0377-0257(93)85046-d
Google Scholar
[10]
J. Pryce-Jones: Experiments on thixotropic and other anomalous fluids with a new rotation viscometer. Journal of Scientific Instruments Vol. 18. 3 (1941), p.39.
DOI: 10.1088/0950-7671/18/3/302
Google Scholar
[11]
K. Dullaert and J. Mewis: A structural kinetics model for thixotropy. Journal of non-newtonian fluid mechanics Vol. 139. 1 (2006), pp.21-30.
DOI: 10.1016/j.jnnfm.2006.06.002
Google Scholar
[12]
P. R. de Souza Mendes: Thixotropic elasto-viscoplastic model for structured fluids. Soft Matter Vol. 7. 6 (2011), pp.2471-2483.
DOI: 10.1039/c0sm01021a
Google Scholar
[13]
P. R. de Souza Mendes and R. L. Thompson: A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids. Rheologica Acta Vol. 52. 7 (2013), pp.673-694.
DOI: 10.1007/s00397-013-0699-1
Google Scholar
[14]
P.R. de Souza Mendes: Dimensionless non-Newtonian fluid mechanics. Journal of Non-Newtonian Fluid Mechanics Vol. 147. 1 (2007), pp.109-116.
DOI: 10.1016/j.jnnfm.2007.07.010
Google Scholar
[15]
H. P. Azikri de Deus and G. S. P. Dupim: On behavior of the thixotropic fluids. Physics Letters A Vol. 377. 6 (2013), pp.478-485.
DOI: 10.1016/j.physleta.2012.12.011
Google Scholar
[16]
R. B. Bird, R. C. Armstrong and O. Hassager: Dynamics of polymeric liquids. Vol. 1: Fluid mechanics. (1987).
Google Scholar
[17]
H. Green and R. Weltmann: Analysis of Thixotropy of Pigment-Vehicle Suspensions-Basic Principles of the Hysteresis Loop. Industrial & Engineering Chemistry Analytical Edition Vol. 15. 3 (1943), pp.201-206.
DOI: 10.1021/i560115a015
Google Scholar
[18]
K. Dullaert and J. Mewis: Thixotropy: Build-up and breakdown curves during flow. Journal of Rheology (1978-present) Vol. 49. 6 (2005), pp.1213-1230.
DOI: 10.1122/1.2039868
Google Scholar