A Numerical Approach on New Constitutive Model for Thixotropic Substances

Article Preview

Abstract:

The thixotropic substances can be found in different industrial sectors, such as chemical, biomedical, manufacturing and oil. These substances show a rheological time-dependent behavior, dependent of their structural level. Generally, a constitutive model for the thixotropic substances is composed by a pair of coupled equations: the constitutive equation (based on viscoelastic models) and the rate equation (that describes the structural evolution). In many works presented in the specialized literature, the shear modulus and viscosity dependencies with the structural nature are not formally considered in the dynamical principles from that the constitutive equation is originated. In the present work, a new, thermodynamically consistent, constitutive model for thixotropic substances, where such dependences are considered, is presented and some rheological tests are analyzed in a numerical simulation point of view (code developed in MATLAB). The constitutive model is based on Jeffreys’ model and the coagulation theory of Smoluchowsky.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-101

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Zhang, W. Li, X. Gong: Smart Mater. Struct. Vol. 19 (2010), p.125012.

Google Scholar

[2] H. El-Gendy, M. Alcoutlabi, M. Jemmett, M. Deo, J. Magda, R. Venkatesan, A. Montesi,: AIChE Journal Vol. 58 n. 1 (2012) , pp.302-311.

DOI: 10.1002/aic.12560

Google Scholar

[3] Q. Nguyen, D. Boger: Rheol. Acta Vol. 24 (1985), pp.427-437.

Google Scholar

[4] A. Mujumdar, A. N. Beris, A. B. Metzner: Journal of Non-Newtonian Fluid Mechanics Vol. 102 (2002), pp.157-178.

DOI: 10.1016/s0377-0257(01)00176-8

Google Scholar

[5] P. R. de Souza Mendes: Journal of Non-Newtonian Fluid Mechanics Vol. 164 (2009), pp.66-75.

Google Scholar

[6] J. Mewis: Journal of Non-Newtonian Fluid Mechanics Vol. 6 (1979), pp.1-20.

Google Scholar

[7] H. Barnes: Journal of Non-Newtonian Fluid Mechanics Vol. 70 (1997) , pp.1-33.

Google Scholar

[8] E. A. Toorman: Rheol. Acta Vol. 36 (1997), pp.56-65.

Google Scholar

[9] R. A. Ritter, J. P. Batycky: SPE J. Vol. 7 (1967), pp.369-376.

Google Scholar

[10] K. Dullaert, J. Mewis: Journal of Non-Newtonian Fluid Mechanics Vol. 139 (2006), pp.21-30.

Google Scholar

[11] P. R. de Souza Mendes: Journal of Non-Newtonian Fluid Mechanics Vol. 164 (2009), pp.66-75.

Google Scholar

[12] P. R. de Souza Mendes: Soft Matter Vol. 7 (2011), pp.2471-2483.

Google Scholar

[13] H. A. de Deus, G. Dupim: Physics Letters A Vol. 337 (2013), pp.478-485.

Google Scholar

[14] H. A. de Deus, G. Dupim: Advanced Materials Research Vol. 629 (2013), pp.623-634.

Google Scholar

[15] H. A. de Deus, G. Dupim : Applied Mathematical Sciences Vol. 6 (2012), pp.6871-6889.

Google Scholar

[16] C. Truesdell, W. Noll: The non-linear field theories of mechanics (3rd Edition, Springer, 2010).

Google Scholar

[17] J. D. Ferry, Viscoelastic properties of polymers (3rd Edition, Wiley, 1980).

Google Scholar

[18] D. Jou, J. Casas-Vsquez, M. Criado-Sancho: Thermodynamics of fluids under flow( 2nd Edition, Springer, 2011).

DOI: 10.1007/978-94-007-0199-1

Google Scholar

[19] M. Criado-Sancho, D. Jou, J. Casas-Vsquez: Polymer Vol. 44 (2003), pp.6965-6971.

DOI: 10.1016/s0032-3861(03)00618-9

Google Scholar

[20] M. Criado-Sancho, D. Jou, L. F. del Castillo, J. Casas-Vsquez: Polymer Vol. 41 (2000), pp.8425-8432.

DOI: 10.1016/s0032-3861(00)00180-4

Google Scholar

[21] G. Marrucci: Trans. Soc. Rheol. Vol. 16 (1972), pp.321-330.

Google Scholar

[22] G. Marrucci, G. Titomanlio, G. Sarti: Rheol. Acta Vol. 12 (1973), pp.269-275.

Google Scholar

[23] P. G. de Gennes: The Journal of Chemical Physics, Vol. 55 (1971), n. 2, pp.572-579.

Google Scholar

[24] H. Freundlich, H. Hatfield: Colloid and capillary chemistry (Methuen, 1926).

Google Scholar

[25] R. Drake: International Reviews in Aerosol Physics and Chemistry Vol. 3 (1972), pp.201-376.

Google Scholar

[26] N. J. Kokholm: J. Phys. A Vol. 21 (1988), pp.839-842.

Google Scholar

[27] K. Kowalczyk-Gajewska, H. Petryk: European Journal of Mechanics- A/Solids Vol. 30 (2011), pp.650-664.

DOI: 10.1016/j.euromechsol.2011.04.002

Google Scholar

[28] A. Rekik, R. Brenner: Mechanics Research Communications Vol. 38 (2011), 305-308.

Google Scholar

[29] M. Lvesque, K. Derrien, L. M. Jr., D. Baptiste, M. Gilchrist: Composites Part A: Applied science and Manufacturing Vol. 35 (2004), pp.905-913.

Google Scholar

[30] P. R. de Souza Mendes, R. L. Thompson: Rheol Acta Vol. 53 (2013), pp.673-694.

Google Scholar