[1]
Arpaci, V. S. Conduction Heat Transfer. Addison-Wesley Publishing Company, (1966).
Google Scholar
[2]
Carslaw, H. S.; Jaeger, J. C. Conduction of Heat in Solids. 2ª Edition, Claredon Press – Oxford, (1986).
Google Scholar
[3]
Bejan, A. Transferência de Calor. Editora Edgard Blücher Ltda, (1996).
Google Scholar
[4]
Bejan, A. Convection Heat Transfer, , John Wiley & Sons, Ltd, (2004).
Google Scholar
[5]
Çengel, Y. A. Heat Transfer: A Practical Approach, Mc-Graw Hill, (2006).
Google Scholar
[6]
Incropera, F. P. and DeWitt, D. P.; Bergman, T. L., La Vive, A. S., Fundamentals of heat and mass transfer. John Wiley & Sons, (2006).
Google Scholar
[7]
Romão, E. C., Moura, L. F. M. Galerkin and Least Squares Method to solve 3D Convection Diffusion Reaction equation with variable coefficients. Numerical Heat Transfer. Part A, Applications, v. 61, pp.669-698, (2012).
DOI: 10.1080/10407782.2012.670594
Google Scholar
[8]
Neves, O. A., Romão, E. C., Silva, J. B. C., Moura, L. F. M. Numeric simulation of pollutant dispersion by a control-volume based on finite element method. International Journal for Numerical Methods in Fluids (Print), v. 66, pp.1073-1092, (2011).
DOI: 10.1002/fld.2296
Google Scholar
[9]
Romão, E. C., Moura, L. F. M. 3D contaminant transport by GFEM with hexahedral elements. International Communications in Heat and Mass Transfer, v. 42, pp.43-50, (2013).
DOI: 10.1016/j.icheatmasstransfer.2012.10.016
Google Scholar
[10]
Romão, E. C., Moura, L. F. M. Least squares method to solve 3D convection diffusion reaction equation with variable coefficients in multi-connected domains. WSEAS Transactions on Applied and Theoretical Mechanics, v. 8, pp.274-281, (2013).
Google Scholar
[11]
Dhatt, G.; Touzot, G. The Finite Element Method Displayed. John Wiley & Sons, 1984. 580p.
Google Scholar