[1]
O. Dosly: Oscillation criteria and the discreteness of the spectrum of self-adjoint, even order, differential operators, Proc. Roy. Soc. Edinburgh A, Vol. 119(1991), pp.219-232.
DOI: 10.1017/s0308210500014797
Google Scholar
[2]
O. Dosly: Oscillation criteria for self-adjoint linear dierential equations, Math. Nachr., Vol. 166(1994), pp.141-153.
DOI: 10.1002/mana.19941660112
Google Scholar
[3]
O. Dosly, J. Osicka: Oscillation and nonoscillation of higher order self-adjoint differential equations, Czech. Math. J. Vol. 52(127)(2002), pp.833-849.
DOI: 10.1023/b:cmaj.0000027237.34494.49
Google Scholar
[4]
O. Dosly: Constants in oscillation theory of higher order Sturm-Liouville differential equations, Electron. J. Differ. Equ., Vol. 34(2002), pp.1-12.
Google Scholar
[5]
O. Dosly, S. Fisnarova: Oscillation and nonoscillation of even order self-adjoint differential equations, Electron. J. Differential Equations Vol. 115(2003), pp.1-21.
DOI: 10.14232/ejqtde.2005.1.13
Google Scholar
[6]
O. Dosly, J. Osicka: Oscillatory properties of higher order Sturm-Liouville differential equations, Studies Univ. Zilina, Math,. Ser. Vol. 15(2002), pp.25-40.
Google Scholar
[7]
I. M. Glazman, Direct method of qualitative spectral analysis of singular differential operators, Israel programma for scientific translations, Jerusalem, (1965).
Google Scholar
[8]
D. B. Hinton, R. T. Lewis, Singular differential operators with spectra discrete and bounded below, Proc. Roy. Soc. Edinburgh A, Vol. 84(1979), pp.117-134.
DOI: 10.1017/s0308210500016991
Google Scholar
[9]
A. M. Molcanov, Conditions for the discreteness of the spectrum of self-adjoint second-order differential equations, Trudy Moskov Mat. Obsc, Vol. 2(1953), pp.169-200.
Google Scholar