[1]
B.C. Stuart, M.D. Feit, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics, Physical Review B - Condensed Matter Mater. Phys. 53 (1996) 1749-1761.
DOI: 10.1103/physrevb.53.1749
Google Scholar
[2]
B. Wolff-Rottke, J. Ihlemann, H. Schmit and A. Scholl, Influence of the laser spot diameter on photo-ablation rates, Appl. Phys. 60 (1995) 13–17.
DOI: 10.1007/bf01577606
Google Scholar
[3]
B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A, 63 (1996) 109–115.
DOI: 10.1007/bf01567637
Google Scholar
[4]
Femtosecond laser-induced damage of gold films / Applied Surface Science, 253 (2007) 7815-7819.
DOI: 10.1016/j.apsusc.2007.02.164
Google Scholar
[5]
M. Yu. Babiy, S.S. Golik, A.V. Kolesnikov and F. G, Bystrov, Femtosecond Laser Machining of Silica and Transparent Materials, Appl. Mech. Mater. 525 (2014) 128-132.
DOI: 10.4028/www.scientific.net/amm.525.128
Google Scholar
[6]
A. Cavalleri, K. Slkolowski-Tinten, J. Bialkoski, M. Schreiner and D. von der Linde, Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy, J. Appl. Phys. 85 (1999) 3301-3309.
DOI: 10.1063/1.369675
Google Scholar
[7]
A.V. Bulgakov, I. Ozerov and W. Marine, Silicon clusters produced by femtosecond laser ablation: non-thermal emission and gas-phase condensation, Appl. Phys. A, 79 (2004) 1591-1594.
DOI: 10.1007/s00339-004-2856-y
Google Scholar
[8]
D. von der Linde and K. Slkolowski-Tinten, The physical mechanisms of short-pulse laser ablation, Appl. Surf. Sci. 154 (2000) 1-10.
DOI: 10.1016/s0169-4332(99)00440-7
Google Scholar
[9]
H. Ki, J. Mazumder, Numerical simulation of femtosecond laser interaction with silicon, J. Las. Appl. 17 (2005) 110-117.
DOI: 10.2351/1.1848529
Google Scholar
[10]
R. Holenstein, S.E. Kirkwood, R. Fedosejevs and Y.Y. Tsui, Simulation of femtosecond laser ablation of silicon, Proc. of SPIE, 5579 (2004) 688.
DOI: 10.1117/12.567675
Google Scholar
[11]
D.T. Pham, S.S. Dimov, C. Ji, P.V. Petkov and T. Dobrev, Laser milling as a rapid, micromanufacturing process, Proc. Inst. Mechanical Engineers, J. Eng. Manuf. Part B, 218 (2004) 1-7.
DOI: 10.1243/095440504772830156
Google Scholar
[12]
D. Karnakis, G. Rutterford, M. Knowles, T. Dobrev, P. Petkov and S. Dimov, High quality laser milling of ceramics, dielectrics and metals using nanosecond and picosecond lasers, Proc. of SPIE. 6106 (2006) 610604.
DOI: 10.1016/b978-008045263-0/50030-1
Google Scholar
[13]
A. Ben-Yakar and R.L. Byer, Morphology of femtosecond-laser-ablated borosilicate glass surfaces, Appl. Phys. Lett. 83 (2003) 3030-3032.
DOI: 10.1063/1.1619560
Google Scholar
[14]
C. Momma, S. Nolte, B.N. Chichkov, F.V. Alvensleben and A. Tunnermann, Precise laser ablation with ultrashort pulses, Appl. Surf. Sci. 109/110 (1997) 15-19.
DOI: 10.1016/s0169-4332(96)00613-7
Google Scholar
[15]
A. Malshe, D. Deshpande, E. Stach, K. Rajurkar and D. Alexander, Investigation of Femtosecond Laser-assisted Micromachining of Lithium Niobate, Ann. CIRP, 53 (2004) 187-190.
DOI: 10.1016/s0007-8506(07)60675-1
Google Scholar
[16]
E. Coyne, J.P. Magee, P. Mannion, G. O'Connor and T.J. Glynn, Characterisation of laser ablation of silicon using a Gaussian wave front and computer generated wave front reconstruction, Appl. Surf. Sci. 229 (2004) 148-160.
DOI: 10.1016/j.apsusc.2004.01.068
Google Scholar
[17]
N. Uppal, P.S. Shiakolas and S. Priya, Micromachining of PZT Using Ultrafast Femtosecond Laser, Ferroelectrics Lett. 32 (2005) 67-77.
DOI: 10.1080/07315170500311465
Google Scholar
[18]
E. Coyne, J.P. Magee, P. Mannion and G. O'Connor, Study of femtosecond laser interaction with wafer-grade silicon, SPIE, 4876 (2003) 487.
DOI: 10.1117/12.463752
Google Scholar
[19]
M. Yu. Babiy, S. S. Golik and F. G. Bystrov, Three-dimensional ultrafast micromachining of silicon for microsystems, Appl. Mech. Mater. 590 (2014) 197-201.
DOI: 10.4028/www.scientific.net/amm.590.197
Google Scholar