Femtosecond Ti:Sa Laser Processing of Silica

Article Preview

Abstract:

The result of direct ablation of silicon by an 800 nm Ti:Sa femtosecond laser pulses are presented. Obtained slice of silicon with submicron roughness with tilt focused femtosecond laser pulses. Yaw cut more due to mechanical vibrations of the entire installation on a pneumatic table, but not the physics of the ongoing process. During processing, possibly thinning the silicon sample from the opposite edge (sharpening) to submicron values ​​(tens of nanometers).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

452-457

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.C. Stuart, M.D. Feit, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics, Physical Review B - Condensed Matter Mater. Phys. 53 (1996) 1749-1761.

DOI: 10.1103/physrevb.53.1749

Google Scholar

[2] B. Wolff-Rottke, J. Ihlemann, H. Schmit and A. Scholl, Influence of the laser spot diameter on photo-ablation rates, Appl. Phys. 60 (1995) 13–17.

DOI: 10.1007/bf01577606

Google Scholar

[3] B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A, 63 (1996) 109–115.

DOI: 10.1007/bf01567637

Google Scholar

[4] Femtosecond laser-induced damage of gold films / Applied Surface Science, 253 (2007) 7815-7819.

DOI: 10.1016/j.apsusc.2007.02.164

Google Scholar

[5] M. Yu. Babiy, S.S. Golik, A.V. Kolesnikov and F. G, Bystrov, Femtosecond Laser Machining of Silica and Transparent Materials, Appl. Mech. Mater. 525 (2014) 128-132.

DOI: 10.4028/www.scientific.net/amm.525.128

Google Scholar

[6] A. Cavalleri, K. Slkolowski-Tinten, J. Bialkoski, M. Schreiner and D. von der Linde, Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy, J. Appl. Phys. 85 (1999) 3301-3309.

DOI: 10.1063/1.369675

Google Scholar

[7] A.V. Bulgakov, I. Ozerov and W. Marine, Silicon clusters produced by femtosecond laser ablation: non-thermal emission and gas-phase condensation, Appl. Phys. A, 79 (2004) 1591-1594.

DOI: 10.1007/s00339-004-2856-y

Google Scholar

[8] D. von der Linde and K. Slkolowski-Tinten, The physical mechanisms of short-pulse laser ablation, Appl. Surf. Sci. 154 (2000) 1-10.

DOI: 10.1016/s0169-4332(99)00440-7

Google Scholar

[9] H. Ki, J. Mazumder, Numerical simulation of femtosecond laser interaction with silicon, J. Las. Appl. 17 (2005) 110-117.

DOI: 10.2351/1.1848529

Google Scholar

[10] R. Holenstein, S.E. Kirkwood, R. Fedosejevs and Y.Y. Tsui, Simulation of femtosecond laser ablation of silicon, Proc. of SPIE, 5579 (2004) 688.

DOI: 10.1117/12.567675

Google Scholar

[11] D.T. Pham, S.S. Dimov, C. Ji, P.V. Petkov and T. Dobrev, Laser milling as a rapid, micromanufacturing process, Proc. Inst. Mechanical Engineers, J. Eng. Manuf. Part B, 218 (2004) 1-7.

DOI: 10.1243/095440504772830156

Google Scholar

[12] D. Karnakis, G. Rutterford, M. Knowles, T. Dobrev, P. Petkov and S. Dimov, High quality laser milling of ceramics, dielectrics and metals using nanosecond and picosecond lasers, Proc. of SPIE. 6106 (2006) 610604.

DOI: 10.1016/b978-008045263-0/50030-1

Google Scholar

[13] A. Ben-Yakar and R.L. Byer, Morphology of femtosecond-laser-ablated borosilicate glass surfaces, Appl. Phys. Lett. 83 (2003) 3030-3032.

DOI: 10.1063/1.1619560

Google Scholar

[14] C. Momma, S. Nolte, B.N. Chichkov, F.V. Alvensleben and A. Tunnermann, Precise laser ablation with ultrashort pulses, Appl. Surf. Sci. 109/110 (1997) 15-19.

DOI: 10.1016/s0169-4332(96)00613-7

Google Scholar

[15] A. Malshe, D. Deshpande, E. Stach, K. Rajurkar and D. Alexander, Investigation of Femtosecond Laser-assisted Micromachining of Lithium Niobate, Ann. CIRP, 53 (2004) 187-190.

DOI: 10.1016/s0007-8506(07)60675-1

Google Scholar

[16] E. Coyne, J.P. Magee, P. Mannion, G. O'Connor and T.J. Glynn, Characterisation of laser ablation of silicon using a Gaussian wave front and computer generated wave front reconstruction, Appl. Surf. Sci. 229 (2004) 148-160.

DOI: 10.1016/j.apsusc.2004.01.068

Google Scholar

[17] N. Uppal, P.S. Shiakolas and S. Priya, Micromachining of PZT Using Ultrafast Femtosecond Laser, Ferroelectrics Lett. 32 (2005) 67-77.

DOI: 10.1080/07315170500311465

Google Scholar

[18] E. Coyne, J.P. Magee, P. Mannion and G. O'Connor, Study of femtosecond laser interaction with wafer-grade silicon, SPIE, 4876 (2003) 487.

DOI: 10.1117/12.463752

Google Scholar

[19] M. Yu. Babiy, S. S. Golik and F. G. Bystrov, Three-dimensional ultrafast micromachining of silicon for microsystems, Appl. Mech. Mater. 590 (2014) 197-201.

DOI: 10.4028/www.scientific.net/amm.590.197

Google Scholar