[1]
S.K. Das, S.U. Choi, W. Yu and T. Pradeep, Nanofluids: science and technology, Wiley-Interscience Hoboken, NJ. (2008).
Google Scholar
[2]
S. Eiamsa-Ard, C. Thianpong, P. Eiamsa-Ard and P. Promvonge, Convective heat transfer in a circular tube with short-length twisted tape insert, Int. Commun. Heat Mass Transf. 36 (4) (2009) 365-371.
DOI: 10.1016/j.icheatmasstransfer.2009.01.006
Google Scholar
[3]
S. Saha, A. Dutta and S Dhal, Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaced twisted-tape elements, Int. J. Heat Mass Transf. 44 (22) (2001) 4211-4223.
DOI: 10.1016/s0017-9310(01)00077-1
Google Scholar
[4]
P. Naphon, Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert, Int. Commun. Heat Mass Transf. 33 (2) (2006) 166-175.
DOI: 10.1016/j.icheatmasstransfer.2005.09.007
Google Scholar
[5]
A. Zamzamian, S.N. Oskouie, A. Doosthoseini, A. Joneidi, and M. Pazouki, Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow, Exp. Therm. Fluid. Sci. 35 (3) (2011).
DOI: 10.1016/j.expthermflusci.2010.11.013
Google Scholar
[6]
K. Wongcharee and S. Eiamsa-ard, Heat transfer enhancement by using CuO/water nanofluid in corrugated tube equipped with twisted tape, Int. Commun. Heat Mass Transf. 39 (2) (2012) 251-257.
DOI: 10.1016/j.icheatmasstransfer.2011.11.010
Google Scholar
[7]
L.S. Sundar, N.R. Kumar, M. Naik, and K. Sharma, Effect of full length twisted tape inserts on heat transfer and friction factor enhancement with Fe3O4 magnetic nanofluid inside a plain tube: An experimental study, Int. J. Heat Mass Transf. 55 (11-12) (2012).
DOI: 10.1016/j.ijheatmasstransfer.2012.02.040
Google Scholar
[8]
K.V. Sharma, L.S. Sundar and P.K. Sarma, Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert, Int. Commun. Heat Mass Transf. 36 (2009).
DOI: 10.1016/j.icheatmasstransfer.2009.02.011
Google Scholar
[9]
M.C.S. Reddy and V.V. Rao, Experimental investigation of heat ransfer coefficient and friction factor of ethylene glycol water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts, Int. Commun. Heat Mass Transfer. 50 (2014).
DOI: 10.1016/j.icheatmasstransfer.2013.11.002
Google Scholar
[10]
M. Chandrasekar, S. Suresh and A.C. Bose, Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid in a circular pipe under laminar flow with wire coil inserts, Expt. Therm. Fluid Sci. 34 (2) (2010).
DOI: 10.1016/j.expthermflusci.2009.10.001
Google Scholar
[11]
M. Kayhani, H. Soltanzadeh, M. Heyhat, M. Nazari and F. Kowsary, Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid, Int. Commun. Heat Mass Transf. 39 (3) (2012) 456-462.
DOI: 10.1016/j.icheatmasstransfer.2012.01.004
Google Scholar
[12]
S. Suresh, K.P. Venkitaraj, P. Selvakumar and M. Chandrasekar, A comparison of thermal characteristics of Al2O3/water and CuO/water nanofluids in transition flow through a straight circular duct fitted with helical screw tape inserts, Exp. Therm. Fluid Sci. 39 (2012).
DOI: 10.1016/j.expthermflusci.2012.01.004
Google Scholar
[13]
X. Zhang, Z. Liu and W. Liu, Numerical studies on heat transfer and flow characteristics for laminar flow in a tube with multiple regularly spaced twisted tapes, Int. J. Therm. Sci. 58 (2012) 157-167.
DOI: 10.1016/j.ijthermalsci.2012.02.025
Google Scholar
[14]
S. Eiamsa-Ard, K. Wongcharee and S. Sripattanapipat, 3-D Numerical simulation of swirling flow and convective heat transfer in a circular tube induced by means of loose-fit twisted tapes, Int. Commun. Heat Mass Transf. 36 (9) (2009) 947-955.
DOI: 10.1016/j.icheatmasstransfer.2009.06.014
Google Scholar
[15]
A.E. Bergles and A.R. Blumenkrantz, Performance evaluation criteria for enhanced heat transfer surfaces, Proc. Of 5th Int. Heat Conf. Tokyo, 2 (1974) 239-243.
DOI: 10.1615/ihtc5.2130
Google Scholar
[16]
B.C. Pak and Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Expt. Heat Transf. 11 (1998) 151–170.
DOI: 10.1080/08916159808946559
Google Scholar
[17]
E.J. Wasp, J.P. Kenny and R.L. Gandhi, Solid-liquid flow: slurry pipeline transportation. [Pumps, valves, mechanical equipment, economics], Ser. Bulk Mater. Handl. (United States), 1 (4) (1977).
Google Scholar
[18]
F.P. Incropera and D.P. Dewitt, Fundamentals of Heat and Mass Transfer, fourth ed. John Wiley & Sons, Newyork, (1996).
Google Scholar