[1]
Altinçekiç, T. G., & Boz, I. (2008). Influence of synthesis conditions on particle morphology of nanosized Cu/ZnO powder by polyol method. Bulletin of Materials Science, 31(4), 619-624.
DOI: 10.1007/s12034-008-0098-x
Google Scholar
[2]
Biswas, A., Bayer, I. S., Biris, A. S., Wang, T., Dervishi, E., & Faupel, F. (2012). Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects. Advances in colloid and interface science, 170(1), 2-27.
DOI: 10.1016/j.cis.2011.11.001
Google Scholar
[3]
Brelle, M. C., Torres-Martinez, C. L., McNulty, J. C., Mehra, R. K., & Zhang, J. Z. (2000).
Google Scholar
[4]
Dang, T. M. D., Le, T. T. T., Fribourg-Blanc, E., & Dang, M. C. (2011). Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2(1), 015009.
DOI: 10.1088/2043-6262/2/1/015009
Google Scholar
[5]
Glaspell, G., Abdelsayed, V., Saoud, K. M., & El-Shall, M. S. (2006). Vapor-phase synthesis of metallic and intermetallic nanoparticles and nanowires: Magnetic and catalytic properties. Pure and applied chemistry, 78(9), 1667-1689.
DOI: 10.1351/pac200678091667
Google Scholar
[6]
Korotcenkov, G., & Cho, B. K. (2010). Synthesis and deposition of sensor materials. Chemical Sensors: Volume 1 General Approaches, 1, 215.
Google Scholar
[7]
Kharissova, O. V., Dias, H. V., Kharisov, B. I., Pérez, B. O., & Pérez, V. M. J. (2013). The greener synthesis of nanoparticles. Trends in biotechnology.
DOI: 10.1016/j.tibtech.2013.01.003
Google Scholar
[8]
Nag, J., & Haglund Jr, R. F. (2008). Synthesis of vanadium dioxide thin films and nanoparticles. Journal of Physics: Condensed Matter, 20(26), 264016.
DOI: 10.1088/0953-8984/20/26/264016
Google Scholar
[9]
Niemeyer, C. M. (2001). Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angewandte Chemie International Edition, 40(22), 4128-4158.
DOI: 10.1002/1521-3773(20011119)40:22<4128::aid-anie4128>3.0.co;2-s
Google Scholar
[10]
Qiao, Y., Chen, H., Lin, Y., & Huang, J. (2011). Controllable Synthesis of Water-Soluble Gold Nanoparticles and Their Applications in Electrocatalysis and Surface-Enhanced Raman Scattering. Langmuir, 27(17), 11090-11097.
DOI: 10.1021/la2019154
Google Scholar
[11]
Salam, H. A., Rajiv, P., Kamaraj, M., Jagadeeswaran, P., Gunalan, S., & Sivaraj, R. (2012). Plants: green route for nanoparticle synthesis. Int Res J Biol Sci, 1(5), 85-90.
Google Scholar
[12]
Shah, P. S., Hanrath, T., Johnston, K. P., & Korgel, B. A. (2004). Nanocrystal and nanowire synthesis and dispersibility in supercritical fluids. The Journal of Physical Chemistry B, 108(28), 9574-9587.
DOI: 10.1021/jp049827w
Google Scholar
[13]
Samim, M., Kaushik, N. K., & Maitra, A. (2007). Effect of size of copper nanoparticles on its catalytic behaviour in Ullman reaction. Bulletin of Materials Science, 30(5), 535-540.
DOI: 10.1007/s12034-007-0083-9
Google Scholar
[14]
TC, P., Mathew, L., Chandrasekaran, N., Raichur, A. M., & Mukherjee, A. Biomimetic Synthesis of Nanoparticles: Science, Technology & Applicability.
Google Scholar
[15]
Umer, A., Naveed, S., Ramzan, N., & Rafique, M. S. (2012). Selection Of A Suitable Method For The Synthesis Of Copper Nanoparticles. Nano, 7(05).
DOI: 10.1142/s1793292012300058
Google Scholar
[16]
Yang, G. B., Chai, S. T., Xiong, X. J., Zhang, S. M., Yu, L. G., & Zhang, P. Y. (2012). Preparation and tribological properties of surface modified Cu nanoparticles. Transactions of Nonferrous Metals Society of China, 22(2), 366-372.
DOI: 10.1016/s1003-6326(11)61185-0
Google Scholar