Solubility Determination of Tamarind Seeds Extracts by Using Supercritical CO2 Extraction

Article Preview

Abstract:

In recent years, tamarind seeds extracts are used widely in food, pharmaceutical and textile industry due to unique functions as cooking oil, antibacterial and thickening agent. In this study, a simple static technique is used to obtain the solubility of tamarind seed in supercritical carbon dioxide because there is no study on that yet. The solubility measured is performed at temperatures and pressures ranging from 40oC, 60oC, 80oC and 3000psi, 5000psi and 7000psi respectively; resulting in mass fractions in the 6.00 x 10-8 to 5.84 x 10-7 range. The Chrastil model is used to correlate the experimental data. The oil yield extract in range of 0.0375 to 0.365g.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1028-1034

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dheeraj Singh, Lobsang Wangchu and Surendra Kumar Moond (2007) Process Product of Tamarind. Natural Product Radiance, 6(4): 315-321.

Google Scholar

[2] Prabhu K. H and Teli M. D (2011) Eco-dyeing using Tamarindus indica L. seed coat tannin as a natural mordant for textiles with antibacterial activity. Journal of Saudi Chemical Society.

DOI: 10.1016/j.jscs.2011.10.014

Google Scholar

[3] Lewis, Schrire G., Mackinder B., and M Lock. (Eds. )(2005) Legumes of the World. Royal BotanicGardens, Kew. http: /www. kew. org/scienceresearchdata/directory/teams/leguminosae/index. htm (20 June 2014).

Google Scholar

[4] Rupali Singh, Rishabha Malviya, Pramod Kumar Sharma (2011) Extraction and Characterization of Tamarind Seed Polysaccharide as a Pharmaceutical Excipient. Pharmacognosy Journal Vol 3(20).

DOI: 10.5530/pj.2011.20.4

Google Scholar

[5] Harmanmeet Kaura, Shikha Yadavb, Munish Ahujab, and Neeraj Dilbaghi (2012) Synthesis, characterization and evaluation of thiolated tamarind seed polysaccharide as a mucoadhesive polymer. Carbohydrate Polymers, 90: 1543– 1549.

DOI: 10.1016/j.carbpol.2012.07.028

Google Scholar

[6] Soumendra Sahoo, Rashmirekha Sahoo, and Padma Lochan. Nayak (2010) Tamarind Seed Polysaccharide: A Versatile Biopolymer for Mucoadhesive Applications. Journal of Pharmaceutical and Biomedical Sciences, 8 (20): 5.

Google Scholar

[7] Suresh Gupta and B.V. Babu (2009) Utilization of waste product (tamarind seeds) for the removal of Cr (VI) from aqueous solutions: Equilibrium, kinetics, and regeneration studies. Journal of Environmental Management, 90: 3013–3022.

DOI: 10.1016/j.jenvman.2009.04.006

Google Scholar

[8] Ali Zeinolabedini Hezave, Amir Mowla and Feridun Esmaeilzadeh (2011) Cetirizine solubility in supercritical CO2 at different pressures and temperatures. The Journal of Supercritical Fluids, 58: 198– 203.

DOI: 10.1016/j.supflu.2011.05.017

Google Scholar

[9] G. N. Sapkale, Patil .S. M., Surwase U. S. And Bhatbhage P. K. (2010) A Review Supercritical Fluid Extraction. International Journal Chemistry Science 8, 729-743.

Google Scholar

[10] Jose L. Marinez (2008) Supercritical Fluid Extraction of Nutraceuticals and Bioactive Compounds. (8) USA: CRC Press Taylor and Francis Group.

Google Scholar

[11] John R. Dean (2011) Application of Supercritical Fluids in Industrial Analysis. (8) USA and Canada: CRC Press, Inc. Boca Raton, Florida.

Google Scholar

[12] Henry I. Castro-Vargasa, Luis I. Rodríguez-Varelab and FabiánParada-Alfonsoa (2011).

Google Scholar

[13] Nian-Yian Lee, Siti Hamidah Mohd Setapar, Nur Syahirah Mohd Sharif , Akil Ahmad, Asma Khatoon, Che Yunus Mohd Azizi and MuhamadIda-Idayu (2013).

DOI: 10.1016/j.phanu.2013.11.116

Google Scholar

[14] Chrastil J. (1982), Solubility of solids and liquids in supercritical gases. J. Physical Chemistry 86, 3016–3021.

DOI: 10.1021/j100212a041

Google Scholar

[15] Ali Zeinolabedini Hezave, Amir Mowla and Feridun Esmaeilzadeh (2011) Cetirizine solubility in supercritical CO2 at different pressures and temperatures. The Journal of Supercritical Fluids, 58: 198– 203.

DOI: 10.1016/j.supflu.2011.05.017

Google Scholar

[16] Huang. Z, Kawi . S, Chiew Y. C, (2004) Solubility of cholesterol and its esters in supercritical carbon dioxide with and without cosolvents, J. Supercritical Fluids 30 (25).

DOI: 10.1016/s0896-8446(03)00116-5

Google Scholar

[17] Chrastil J. (1982), Solubility of solids and liquids in supercritical gases. J. Physical Chemistry 86, 3016–3021.

DOI: 10.1021/j100212a041

Google Scholar