[1]
B. Razavi, A 60 GHz CMOS Receiver Front-end, IEEE J. Solid-State Circuits, vol. 41, no. 1, p.17–22, Jan. (2009).
DOI: 10.1109/jssc.2005.858626
Google Scholar
[2]
T. Mitomo, T. Mitomo, R. Fujimoto, N. Ono, R. Tachibana, H. Hoshino, Y. Yoshihara, Y. Tsutsumi, and I. Seto, A 60 GHz CMOS Receiver Front-end with Frequency Synthesizer, IEEE J. Solid-State Circuits, vol. 43, no. 4, p.1030–1037, Apr. (2009).
DOI: 10.1109/jssc.2008.917557
Google Scholar
[3]
B. Razavi, A Millimeter-wave CMOS Heterodyne Receiver with On-Chip LO and Divider, IEEE J. Solid-State Circuits, vol. 43, no. 2, p.477–485, Feb. (2008).
DOI: 10.1109/jssc.2007.914300
Google Scholar
[4]
P. Smulders, Exploiting the 60 GHz Band for Local Wireless Multimedia Access: Prospects and Future Directions, IEEE Communications Magazine, Vol. 40, no. 1, p.140–147, Jan. (2002).
DOI: 10.1109/35.978061
Google Scholar
[5]
J. A. Howarth, A. P. Lauterbach, M. J. Boers, L. M. Davis, A. Parker,J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, 60 GHz Radios: Enabling Next-generation Wireless Applications, in Proc. TENCON 2005 2005 IEEE Region 10, 21–24 Nov. 2005, p.1.
DOI: 10.1109/tencon.2005.300975
Google Scholar
[6]
S. McCann and A. Ashley, Official IEEE 802. 11 Working Group Project Timelines, November2011. [Online]. Available: http: /www. ieee802. org/11/Reports/802. 11_Timelines. htm.
Google Scholar
[7]
A. Vakil, and N. Engheta, Transformation Optics Using Graphene, Science, vol. 332, p.1291–1294, (2011).
DOI: 10.1126/science.1202691
Google Scholar
[8]
B. D. Dawson, et. al, Measurement of Plasmon Dispersion in Graphene: Tunable Graphene Plasmonics, American Physical Society, APS March Meeting, (2012).
Google Scholar
[9]
I. Llatser, et. al, Characterization of Graphene-based Nanoantennas in the Terahertz Band, 6th European Conference on Antennas and Propagation (EUCAP 2012), p.194–198, 26-30 March (2012).
DOI: 10.1109/eucap.2012.6206598
Google Scholar
[10]
J. Borremans, M. Dehan, K. Scheir, M. Kuijk, and P. Wambacq, VCO Design for 60 GHz Applications using Differential Shielded Inductors 0. 13 µm in CMOS, in Proc. IEEE Radio Frequency Integrated Circuits Symp., 2008, p.135–138.
DOI: 10.1109/rfic.2008.4561403
Google Scholar
[11]
K. Scheir, S. Bronckers, J. Borremans, P. Wambacq, and Y. Rolain, A 52 GHz Phased-array Receiver Front-end in 90 nm digital CMOS, in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, p.184–185.
DOI: 10.1109/jssc.2008.2004861
Google Scholar
[12]
Hong-Dean Chen, Broadband CPW-fed Square Slot Antennas with a Widened Tuning Stub, IEEE, Trans. Antennas and Prop. 51, 1892 (2003).
DOI: 10.1109/tap.2003.814747
Google Scholar
[13]
G.W. Hanson, Dyadic Green's Function and Guided Surface Waves for a Surface Conductivity Model of Graphene, J. Appl. Phys. 103, 064302 (2008).
DOI: 10.1063/1.4776680
Google Scholar
[14]
J.S. Gómez-Díaz, J. Perruisseau-Carrier, P. Sharmaand A. Ionescu, Non-contact Characterization of Graphene Surface Impedance at micro and millimeter-waves, J. Appl. Phys. 111, 114908(2012).
DOI: 10.1063/1.4728183
Google Scholar
[15]
H.S. Skulason, H.V. Nguyen, A. Guermoune, V. Sridharan, M. Siaj, C. Caloz and T. Szkopek, "110 GHz Measurement of Large–area Graphene Integrated in Low-loss Microwave Structures, Appl. Phys. Lett. 99, 153504 (2011).
DOI: 10.1063/1.3650710
Google Scholar
[16]
S. Rodríguez, R. Yen, L. Liu, D. Jena and H.G. Xiang, Graphene for Reconfigurable Terahertz Optoelectronics, Proc. IEEE 101, 1705-1716 (2013).
DOI: 10.1109/jproc.2013.2250471
Google Scholar
[17]
AL. Walter, Electronic Structure of Graphene on Single-Crystal Copper Substrates, Phys. Rev. B. 84, 195443, (2011).
Google Scholar
[18]
L. Pierantoni D. Mencarelli, T. Rozzi, Modeling of the Electromagnetic/Coherent Transport Problem in Nanostructured Materials, Devices and Systems Using Combined TLM-FDTD techniques, Microwave Symposium Digest, 2011 Int. Microwave Symposium, Baltimore, MA, USA, June 5-10, 2011, pp.1-4.
DOI: 10.1109/mwsym.2011.5972974
Google Scholar