Tuning Graphene Surface Resistance for a 52 GHz Nano-Antenna

Article Preview

Abstract:

The commercial potential of the 60 GHz band, in combination with the scaling growth of graphene nanotechnology, has resulted in a lot of digital graphene circuits for millimeter-wave application. This work presents a 0.345 nm monolayer graphene film on substrates SiO2/Teflon/Copper as a new nanoantenna. The nanoantenna achieves 2.003 of maximum gain (Abs) with particularly the graphene sheet resistance and reactance as the key variables. The presented nanoantenna targets 52 GHz communication where beamforming is required.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1151-1155

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Razavi, A 60 GHz CMOS Receiver Front-end, IEEE J. Solid-State Circuits, vol. 41, no. 1, p.17–22, Jan. (2009).

DOI: 10.1109/jssc.2005.858626

Google Scholar

[2] T. Mitomo, T. Mitomo, R. Fujimoto, N. Ono, R. Tachibana, H. Hoshino, Y. Yoshihara, Y. Tsutsumi, and I. Seto, A 60 GHz CMOS Receiver Front-end with Frequency Synthesizer, IEEE J. Solid-State Circuits, vol. 43, no. 4, p.1030–1037, Apr. (2009).

DOI: 10.1109/jssc.2008.917557

Google Scholar

[3] B. Razavi, A Millimeter-wave CMOS Heterodyne Receiver with On-Chip LO and Divider, IEEE J. Solid-State Circuits, vol. 43, no. 2, p.477–485, Feb. (2008).

DOI: 10.1109/jssc.2007.914300

Google Scholar

[4] P. Smulders, Exploiting the 60 GHz Band for Local Wireless Multimedia Access: Prospects and Future Directions, IEEE Communications Magazine, Vol. 40, no. 1, p.140–147, Jan. (2002).

DOI: 10.1109/35.978061

Google Scholar

[5] J. A. Howarth, A. P. Lauterbach, M. J. Boers, L. M. Davis, A. Parker,J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, 60 GHz Radios: Enabling Next-generation Wireless Applications, in Proc. TENCON 2005 2005 IEEE Region 10, 21–24 Nov. 2005, p.1.

DOI: 10.1109/tencon.2005.300975

Google Scholar

[6] S. McCann and A. Ashley, Official IEEE 802. 11 Working Group Project Timelines, November2011. [Online]. Available: http: /www. ieee802. org/11/Reports/802. 11_Timelines. htm.

Google Scholar

[7] A. Vakil, and N. Engheta, Transformation Optics Using Graphene, Science, vol. 332, p.1291–1294, (2011).

DOI: 10.1126/science.1202691

Google Scholar

[8] B. D. Dawson, et. al, Measurement of Plasmon Dispersion in Graphene: Tunable Graphene Plasmonics, American Physical Society, APS March Meeting, (2012).

Google Scholar

[9] I. Llatser, et. al, Characterization of Graphene-based Nanoantennas in the Terahertz Band, 6th European Conference on Antennas and Propagation (EUCAP 2012), p.194–198, 26-30 March (2012).

DOI: 10.1109/eucap.2012.6206598

Google Scholar

[10] J. Borremans, M. Dehan, K. Scheir, M. Kuijk, and P. Wambacq, VCO Design for 60 GHz Applications using Differential Shielded Inductors 0. 13 µm in CMOS, in Proc. IEEE Radio Frequency Integrated Circuits Symp., 2008, p.135–138.

DOI: 10.1109/rfic.2008.4561403

Google Scholar

[11] K. Scheir, S. Bronckers, J. Borremans, P. Wambacq, and Y. Rolain, A 52 GHz Phased-array Receiver Front-end in 90 nm digital CMOS, in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, p.184–185.

DOI: 10.1109/jssc.2008.2004861

Google Scholar

[12] Hong-Dean Chen, Broadband CPW-fed Square Slot Antennas with a Widened Tuning Stub, IEEE, Trans. Antennas and Prop. 51, 1892 (2003).

DOI: 10.1109/tap.2003.814747

Google Scholar

[13] G.W. Hanson, Dyadic Green's Function and Guided Surface Waves for a Surface Conductivity Model of Graphene, J. Appl. Phys. 103, 064302 (2008).

DOI: 10.1063/1.4776680

Google Scholar

[14] J.S. Gómez-Díaz, J. Perruisseau-Carrier, P. Sharmaand A. Ionescu, Non-contact Characterization of Graphene Surface Impedance at micro and millimeter-waves, J. Appl. Phys. 111, 114908(2012).

DOI: 10.1063/1.4728183

Google Scholar

[15] H.S. Skulason, H.V. Nguyen, A. Guermoune, V. Sridharan, M. Siaj, C. Caloz and T. Szkopek, "110 GHz Measurement of Large–area Graphene Integrated in Low-loss Microwave Structures, Appl. Phys. Lett. 99, 153504 (2011).

DOI: 10.1063/1.3650710

Google Scholar

[16] S. Rodríguez, R. Yen, L. Liu, D. Jena and H.G. Xiang, Graphene for Reconfigurable Terahertz Optoelectronics, Proc. IEEE 101, 1705-1716 (2013).

DOI: 10.1109/jproc.2013.2250471

Google Scholar

[17] AL. Walter, Electronic Structure of Graphene on Single-Crystal Copper Substrates, Phys. Rev. B. 84, 195443, (2011).

Google Scholar

[18] L. Pierantoni D. Mencarelli, T. Rozzi, Modeling of the Electromagnetic/Coherent Transport Problem in Nano­structured Materials, Devices and Systems Using Combined TLM-FDTD techniques, Microwave Symposium Digest, 2011 Int. Microwave Symposium, Baltimore, MA, USA, June 5-10, 2011, pp.1-4.

DOI: 10.1109/mwsym.2011.5972974

Google Scholar