Functionalization of Multi Wall Carbon Nanotubes Using Nitric Acid Oxidation

Article Preview

Abstract:

Functionalized of Multi Wall Carbon Nanotubes (MWCNTs) were demonstrated using the nitric acid (HNO3) oxidation technique in order to get opened caps, removing carbonaceous and metal particles impurities for carboxylic groups (-COOH). The surface morphology and the existence of the carboxyl-group on the MWCNTs were examined using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM), respectively. The carboxylic groups were observed at the peak of 1640.40cm-1 via FTIR and indicate the absorbance intensity of the functionalized MWCNTs is 2.22 A which is higher than raw material. Furthermore, SEM image shows the bundle of structure on the raw MWCNTs signified the Van der Waals interaction between MWCNTs while after functionalized a groovy CNTs wall were observed due to presence of carboxyl group at the defect sites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1156-1160

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Cheraghali, EFFECT OF DRY & WET OXIDATION OF MULTI WALLED CARBON NANOTUBES ON THEIR STRUCTURES, Acad. J., vol. 3, no. 2, p.820, (2011).

Google Scholar

[2] X. F. Wang, M. Hasegawa, K. Tsugawa, a. R. Ruslinda, and H. Kawarada, Controllable oxidization of boron doped nanodiamond covered with different solution via UV/ozone treatment, Diam. Relat. Mater., vol. 24, p.146–152, Apr. (2012).

DOI: 10.1016/j.diamond.2011.12.033

Google Scholar

[3] AZoNano, Multiwall Carbon Nanotubes (MWCNT): Production, Analysis and Application, (2013).

Google Scholar

[4] M. F. Fatin, A. R. Ruslinda, M. K. Arshad, U. Hashim, S. Norhafizah, and M. A. Farehanim, Surface Functionalization of Multiwalled Carbon Nanotube for Biosensor Device Application, IEEE-ICSE2014 Proc. 2014, Kuala Lumpur, Malaysia, p.393–395, (2014).

DOI: 10.1109/smelec.2014.6920876

Google Scholar

[5] Andreas Hirsch. Otto Vostrowsky, Functionalization of Carbon Nanotubes. Top Curr Chem, no. 245, p.193–237, (2005).

Google Scholar

[6] C. G. V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsisa, Chemical oxidation of multiwalled carbon nanotubes, no. 46, p.833 –840, (2008).

DOI: 10.1016/j.carbon.2008.02.012

Google Scholar

[7] P. K. S. Yongliang Li, Feng Ping Hu, Xin Wang, Anchoring metal nanoparticles on hydrofluoric acid treated multiwalled carbon nanotubes as stable electrocatalysts, Electrochem. commun., no. 10, p.1101– 1104, (2008).

DOI: 10.1016/j.elecom.2008.05.025

Google Scholar

[8] J. L. Xiuying Wang, Baiying Xia, Xingfu Zhu, Jiesheng Chen, Shilun Qiu, Controlled modification of multiwalled carbon nanotubes with ZnO nanostructures, Solid State Chem., no. 181, p.822– 827, (2008).

DOI: 10.1016/j.jssc.2008.01.005

Google Scholar

[9] K. S. Ebrahim Najafi, Jae-Yong Kim, Song-Hee Han, UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion, Colloids and Surfaces A: Physicochem, p.284– 285, (2006).

DOI: 10.1016/j.colsurfa.2005.11.074

Google Scholar

[10] H. W. Hao Yu, Yuguang Jin, Zhili Li, Feng Peng, Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst, J. Solid State Chem., no. 181, p.432–438, (2008).

DOI: 10.1016/j.jssc.2007.12.017

Google Scholar

[11] S. A. Shamsuddin, N. Hamidah, A. Halim, U. Hashim, M. N. Derman, L. F. Wah, M. Asyraf, and A. Zulkifli, The Characterization Study of Functionalized Multi- Wall Carbon Nanotubes Purified by Acid Oxidation, RSM2011 Proc. 2011, Kota Kinabalu, Malaysia, vol. 1410, no. C, p.43–45, (2011).

DOI: 10.1109/rsm.2011.6088339

Google Scholar

[12] U. S. O. P.H. Matter, Catal. Lett, no. 109, p.115–123, (2006).

Google Scholar

[13] L. Stobinski, B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski, and J. Judek, Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods, J. Alloys Compd., vol. 501, no. 1, p.77–84, Jul. (2010).

DOI: 10.1016/j.jallcom.2010.04.032

Google Scholar

[14] Brian Smith, Infrared Spectral Interpretation: A System Approach, CRC Press LLC, p.98–108, (2000).

Google Scholar