[1]
R. Cheraghali, EFFECT OF DRY & WET OXIDATION OF MULTI WALLED CARBON NANOTUBES ON THEIR STRUCTURES, Acad. J., vol. 3, no. 2, p.820, (2011).
Google Scholar
[2]
X. F. Wang, M. Hasegawa, K. Tsugawa, a. R. Ruslinda, and H. Kawarada, Controllable oxidization of boron doped nanodiamond covered with different solution via UV/ozone treatment, Diam. Relat. Mater., vol. 24, p.146–152, Apr. (2012).
DOI: 10.1016/j.diamond.2011.12.033
Google Scholar
[3]
AZoNano, Multiwall Carbon Nanotubes (MWCNT): Production, Analysis and Application, (2013).
Google Scholar
[4]
M. F. Fatin, A. R. Ruslinda, M. K. Arshad, U. Hashim, S. Norhafizah, and M. A. Farehanim, Surface Functionalization of Multiwalled Carbon Nanotube for Biosensor Device Application, IEEE-ICSE2014 Proc. 2014, Kuala Lumpur, Malaysia, p.393–395, (2014).
DOI: 10.1109/smelec.2014.6920876
Google Scholar
[5]
Andreas Hirsch. Otto Vostrowsky, Functionalization of Carbon Nanotubes. Top Curr Chem, no. 245, p.193–237, (2005).
Google Scholar
[6]
C. G. V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsisa, Chemical oxidation of multiwalled carbon nanotubes, no. 46, p.833 –840, (2008).
DOI: 10.1016/j.carbon.2008.02.012
Google Scholar
[7]
P. K. S. Yongliang Li, Feng Ping Hu, Xin Wang, Anchoring metal nanoparticles on hydrofluoric acid treated multiwalled carbon nanotubes as stable electrocatalysts, Electrochem. commun., no. 10, p.1101– 1104, (2008).
DOI: 10.1016/j.elecom.2008.05.025
Google Scholar
[8]
J. L. Xiuying Wang, Baiying Xia, Xingfu Zhu, Jiesheng Chen, Shilun Qiu, Controlled modification of multiwalled carbon nanotubes with ZnO nanostructures, Solid State Chem., no. 181, p.822– 827, (2008).
DOI: 10.1016/j.jssc.2008.01.005
Google Scholar
[9]
K. S. Ebrahim Najafi, Jae-Yong Kim, Song-Hee Han, UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion, Colloids and Surfaces A: Physicochem, p.284– 285, (2006).
DOI: 10.1016/j.colsurfa.2005.11.074
Google Scholar
[10]
H. W. Hao Yu, Yuguang Jin, Zhili Li, Feng Peng, Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst, J. Solid State Chem., no. 181, p.432–438, (2008).
DOI: 10.1016/j.jssc.2007.12.017
Google Scholar
[11]
S. A. Shamsuddin, N. Hamidah, A. Halim, U. Hashim, M. N. Derman, L. F. Wah, M. Asyraf, and A. Zulkifli, The Characterization Study of Functionalized Multi- Wall Carbon Nanotubes Purified by Acid Oxidation, RSM2011 Proc. 2011, Kota Kinabalu, Malaysia, vol. 1410, no. C, p.43–45, (2011).
DOI: 10.1109/rsm.2011.6088339
Google Scholar
[12]
U. S. O. P.H. Matter, Catal. Lett, no. 109, p.115–123, (2006).
Google Scholar
[13]
L. Stobinski, B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski, and J. Judek, Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods, J. Alloys Compd., vol. 501, no. 1, p.77–84, Jul. (2010).
DOI: 10.1016/j.jallcom.2010.04.032
Google Scholar
[14]
Brian Smith, Infrared Spectral Interpretation: A System Approach, CRC Press LLC, p.98–108, (2000).
Google Scholar