[1]
A. Knezevic, Z. Tarle, A. Menig, J. Sutalo, G. Pichler, Degree of conversion and temperature rise during polymerization of resin composite samples with blue diodes. J. Oral Rehabil. 28(6) (2001): 586–591.
DOI: 10.1046/j.1365-2842.2001.00709.x
Google Scholar
[2]
R.B. Price, T. Dérand, R.W. Lonev, P. Andreou, Effect of light source and specimen thickness on the surface hardness of resin composite. Am. J. Dent. 15(1) (2002): 47–53.
Google Scholar
[3]
A.U. Yap, Effectiveness of polymerization in composite restoratives claiming bulk placement: impact of cavity depth and exposure time. Oper. Dent. 25(2) (2000): 113–120.
Google Scholar
[4]
J.L. Ferracane, E.H. Greener, Fourier transform infrared analysis of degree of polymerization of unfilled resins: methods comparison. J. Dent. Res. 63(8) (1984): 1093–1095.
DOI: 10.1177/00220345840630081901
Google Scholar
[5]
E. Asmussen, A. Peutzfeldt, Polymer structure of a light-cured resin composite in relation to distance from the surface. Eur. J. Oral Sci. 111(3) (2003): 277–279.
DOI: 10.1034/j.1600-0722.2003.00044.x
Google Scholar
[6]
E. Asmussen, A. Peutzfeldt, Influence of specimen diameter on the relationship between subsurface depth and hardness of a light-cured resin composite. Eur. J. Oral Sci. 111(6) (2003): 543–546.
DOI: 10.1111/j.0909-8836.2003.00077.x
Google Scholar
[7]
A.R. Peris, F.H.O. Mitsui, C.M. Amaral, G.M.B. Ambrosano, L.A.F. Pimenta, The effect of composition type on microhardness when using quartz-tungsten-halogen (QTH) or LED lights. Oper. Dent. 30 (2005): 649-654.
Google Scholar
[8]
M.S. Soh, A.U. Yap, K.S. Siow, Effectiveness of composite cure associated with different curing modes of LED lights. Oper Dent. 28 (4) (2003): 371-7.
Google Scholar
[9]
D.M.B. Caldas, J.B. Almeida, L. Correr-Sobrinho, M.A. Sinhoreti, S. Consani, Influence of curing tip distance on resin composite Knoop hardness number, using three different light curing units. Oper. Dent. 28(3) (2003): 315-20.
DOI: 10.4103/0970-9290.57370
Google Scholar
[10]
C. Kurachi, A.M. Tuboy, D.V. Magalhaes, V.S. Bagnato. Hardness evaluation of a dental composite polymerized with experimental LED-based devices. Dent Mater. 17 (2001): 309–315.
DOI: 10.1016/s0109-5641(00)00088-9
Google Scholar
[11]
U. Lohbauer, C. Rahiotis, N. Krämer, A. Petschelt, G. Eliades, The effect of different light-curing units on fatigue behavior and degree of conversion of a resin composite. Dent. Mater. 21(7) (2005): 608-15.
DOI: 10.1016/j.dental.2004.07.020
Google Scholar
[12]
T.H. Yoon, Y.K. Lee, B.S. Lim, C.W. Kim, Degree of polymerization of resin composites by different light sources. J. Oral Rehabil. 29 (2002): 1165–1173.
DOI: 10.1046/j.1365-2842.2002.00970.x
Google Scholar
[13]
K.D. Jandt, R.W. Mills, G.B. Blackwell, S. H Ashworth, Depth of cure and compressive strength of dental composites cured with blue light emitting diodes (LEDs). Dent. Mater. 16(1) (2000): 41-7.
DOI: 10.1016/s0109-5641(99)00083-4
Google Scholar
[14]
A.U. Yap, N.Y. Wong, K.S. Siow, Composite cure and shrinkage associated with high intensity curing light. Oper. Dent. 28(4) (2003): 357–364.
Google Scholar
[15]
T.G. Oberholzer, S.R. Grobler, C.H. Pameijer, A.P. Hudson, The effects of light intensity and method of exposure on the hardness of four light-cured dental restorative materials. Int. Dent. J. 53(4) (2003): 211–215.
DOI: 10.1111/j.1875-595x.2003.tb00747.x
Google Scholar
[16]
R.R. Moraes, J.L. Marimon, L.F. Schneider, S.L. Correr, G.B. Camacho, M. Bueno, Carbamide peroxide bleaching agents: Effects on surface roughness of enamel, composite and porcelain. Clin. Oral Investig. 10 (2006): 23-28.
DOI: 10.1007/s00784-005-0016-1
Google Scholar
[17]
K.H. Kim, J.L. Ong, O. Okuno, The effect of filler loading and morphology on the mechanical properties of contemporary composites. J. Prosthet. Dent. 87 (2002): 642-649.
DOI: 10.1067/mpr.2002.125179
Google Scholar
[18]
K.J. Soderholm, P. Lambrechts, D. Sarrett, Y. Abe, M.C. Yang, R. Labella, E. Yildiz, G. Willems, Clinical wear performance of eight experimental dental composites over three years determined by two measuring methods. Eur J Oral Sci. 109 (2001).
DOI: 10.1034/j.1600-0722.2001.00064.x
Google Scholar
[19]
T. Yamaga, Y. Sato, Y. Akagawa, M. Taira, K. Wakasa, M. Yamaki, Hardness and fracture toughness of four commercial visible light-cured resin vennering materials. J. Oral Rehabil. 22 (1995): 857-863.
DOI: 10.1111/j.1365-2842.1995.tb00234.x
Google Scholar
[20]
I. Nica, N. Cimpoeşu, V. Rusu, M. Andronache, C. Ştefănescu, Stuctural Properties of Nanofilled and Microfilled Restorative Composites, Mat. Plast., 49(2) (2012): 176-180.
Google Scholar
[21]
I. Hubbezoglu, G. Bolayir, O.M. Dogan, A. Dogan, A. Ozer, B. Bek, Microhardness evaluation of resin composites polymerized by three different light sources. Dent. Mat. J. 26(6) (2007): 845-53.
DOI: 10.4012/dmj.26.845
Google Scholar
[22]
H.F. Albers, Resin Polymerization, in: H.F. Albers (Eds), Tooth-colored restoratives. Principles and techniques 9ªEd, B.C. Decker Inc., London, 2002, pp.81-110.
Google Scholar
[23]
C. Prati, S. Cherson, L. Montebugnoli, G. Montanari, Effect of the air dentin and resin-based composite thickness on light intensity reduction. Am. J. Dent. 12(5) (1999): 231–234.
Google Scholar
[24]
R.B.T. Price, C.A. Felix, P. Andreou, Knoop hardness of ten resin composites irradiated with high-power LED and quartz-tungsten-halogen lights. Biomater. 26 (2005): 2631-2641.
DOI: 10.1016/j.biomaterials.2004.06.050
Google Scholar
[25]
F.H.B. Aguiar, K.R.M. Andrade, D.A. Lima, G.M. Ambrosan, J.R. Lovadino, Influence of light curing and sample thickness on microhardness of a composite resin. Clin. Cosmet. Investig. Dent. 1 (2009): 21-25.
Google Scholar
[26]
S. Stoleriu, G. Iovan, G. pancu, A. Georgescu, A.V. Sandu, S. Andrian, Study Regarding the Resistance of Enamel and Dentine Affected by Dental Fluorosis to Demineralization Challenge, Revista de Chimie (Bucharest), 63 (2012): 1120-1123.
Google Scholar
[27]
S. Stoleriu, G. Iovan, G. pancu, A. Georgescu, A.V. Sandu, S. Andrian, In vitro Evaluation of Acidic Beverages Effect in Dentine and Cement, with and without Storage in Artificial Saliva, Materiale Plastice (Bucharest), 51 (2014): 162-166.
DOI: 10.37358/mp.18.4.5079
Google Scholar