[1]
P. Duxson, a. Fernández-Jiménez, J. L. Provis, G. C. Lukey, a. Palomo, and J. S. J. Deventer, Geopolymer technology: the current state of the art, J. Mater. Sci., vol. 42, no. 9, p.2917–2933, Dec. (2006).
DOI: 10.1007/s10853-006-0637-z
Google Scholar
[2]
D. Khale and R. Chaudhary, Mechanism of geopolymerization and factors influencing its development: a review, J. Mater. Sci., vol. 42, no. 3, p.729–746, Jan. (2007).
DOI: 10.1007/s10853-006-0401-4
Google Scholar
[3]
P. Sukmak, S. Horpibulsuk, S. -L. Shen, P. Chindaprasirt, and C. Suksiripattanapong, Factors influencing strength development in clay–fly ash geopolymer, Constr. Build. Mater., vol. 47, p.1125–1136, Oct. (2013).
DOI: 10.1016/j.conbuildmat.2013.05.104
Google Scholar
[4]
K. Vijai, R. Kumutha, and B. G. Vishnuram, Effect of types of curing on strength of geopolymer concrete, Int. J. Phys. Sci., vol. 5, p.1419–1423, (2010).
Google Scholar
[5]
D. Hardjito, S. E. Wallah, D. M. J. Sumajouw, and B. V Rangan, FACTORS INFLUENCING THE COMPRESSIVE STRENGTH OF FLY ASH-BASED GEOPOLYMER CONCRETE, vol. 6, no. 2, p.88–93, (2007).
DOI: 10.1007/s10853-006-0523-8
Google Scholar
[6]
J. Gergely, H. Hilger, V. Ogunro, and J. Ramsdell, ENGINEERING CHARACTERIZATION OF WASTE DERIVED GEOPOLYMER CEMENT CONCRETE FOR STRUCTURAL APPLICATIONS by Brett Tempest A dissertation submitted to the faculty of The University of North Carolina at Charlotte in partial fulfillment of the requirements for t, (2010).
Google Scholar
[7]
M. M. A. B. Abdullah, K. Hussin, M. Bnhussain, K. N. Ismail, Z. Yahya, and R. Abdul Razak, Fly Ash-based Geopolymer Lightweight Concrete Using Foaming Agent, International Journal of Molecular Sciences, vol. 13. p.7186–7198, (2012).
DOI: 10.3390/ijms13067186
Google Scholar
[8]
G. Saravanan, C. A. Jeyasehar, and S. Kandasamy, Flyash based geopolymer concrete-A state of the art review, J. Eng. Sci. Technol. Rev., vol. 6, p.25–32, (2013).
Google Scholar
[9]
A. M. M. Al Bakri, H. Kamarudin, M. Bnhussain, I. K. Nizar, A. R. Rafiza, and A. M. Izzat, Chemical Reactions in the Geopolymerisation Process Using Fly Ash-Based Geopolymer: A Review., J. Appl. Sci. Res., vol. 7, p.1199–1203, (2011).
DOI: 10.4028/www.scientific.net/amr.626.918
Google Scholar
[10]
P. N. Lemougna, K. J. D. MacKenzie, and U. F. C. Melo, Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash, Ceram. Int., vol. 37, no. 8, p.3011–3018, Dec. (2011).
DOI: 10.1016/j.ceramint.2011.05.002
Google Scholar
[11]
E. Papa, V. Medri, E. Landi, B. Ballarin, and F. Miccio, Production and characterization of geopolymers based on mixed compositions of metakaolin and coal ashes, Mater. Des., vol. 56, p.409–415, Apr. (2014).
DOI: 10.1016/j.matdes.2013.11.054
Google Scholar
[12]
M. Zhang, H. Guo, T. El-Korchi, G. Zhang, and M. Tao, Experimental feasibility study of geopolymer as the next-generation soil stabilizer, Constr. Build. Mater., vol. 47, p.1468–1478, Oct. (2013).
DOI: 10.1016/j.conbuildmat.2013.06.017
Google Scholar
[13]
N. Cristelo, S. Glendinning, T. Miranda, D. Oliveira, and R. Silva, Soil stabilisation using alkaline activation of fly ash for self compacting rammed earth construction, Constr. Build. Mater., vol. 36, p.727–735, Nov. (2012).
DOI: 10.1016/j.conbuildmat.2012.06.037
Google Scholar
[14]
L. Verdolotti, S. Iannace, M. Lavorgna, and R. Lamanna, Geopolymerization reaction to consolidate incoherent pozzolanic soil, J. Mater. Sci., vol. 43, no. 3, p.865–873, Oct. (2007).
DOI: 10.1007/s10853-007-2201-x
Google Scholar