[1]
Medhat, A.E. and Saleh, H.K., 2013. Fracture properties of SPS Tungsten Copper Composites, J. Metall and Mater Trans A, 44A, pp.544-551.
Google Scholar
[2]
Lai-Ma, L, Xiao-Yue, T, Ze-Long, L, Xiao-Yong, Z, Xiang, Z, Guang-Nan, L. and Yu-Cheng, W, 2014. Sintering Behavior of W-30Cu Composite powder produced by Electroless plating, Int. J. Refract Metals and Hard Mater, 42, pp.51-56.
Google Scholar
[3]
Li-Mei, H, Lai-Ma, L, Xiao-Yu, D, Guang-Nan, L, Ziang, Z, Ji-Gui, C. and Yu-Cheng, W, 2014. Effects of Simplified pre-treatment process on the Morphology of W-Cu Composite Powder prepared by Electroless Plating and its sintering characterization, J. Powder Tech, 258, pp.216-221.
DOI: 10.1016/j.powtec.2014.03.027
Google Scholar
[4]
Liu, S, Yu, K, Shen, Q, Li, M, Chen, W, Luo, G. and Zhang, L, 2013. Fabrication of W-Cu Composite Powders by Direct Electroless Plating using a Dripping Method, J. Wuhan Uni Tech Mater. sc. Ed, pp.829-833.
DOI: 10.1007/s11595-013-0777-3
Google Scholar
[5]
Abu-Oqail, A, Ghanim, M, El-Sheikh, M. and El-Nikhaily, A, 2012. Effects of Processing Parameters of Tungsten-Copper Composites, Int. J. Refract Metals and Hard mater, 35, pp.207-212.
DOI: 10.1016/j.ijrmhm.2012.02.015
Google Scholar
[6]
Mondal, A, Agrawal, D. and Upadhyaya, A, 2010. Microwave Sintering of Refractory Metals/Alloys: W, Mo, Re, W-Cu, W-Ni-Cu and W-Ni-Fe Alloys, J. Microwave Powder and Electromag Energy, 44 (1), pp.28-44.
DOI: 10.1080/08327823.2010.11689768
Google Scholar
[7]
Zhou, Y, Wang, K, Lie, R, Wang, X. P, Liu, C. S and Fang, Q. F, 2012. High Performance Tungsten Synthesized by Microwave Sintering Method, Int. J. Refract Metals and Hard Mater, 34, pp.13-17.
DOI: 10.1016/j.ijrmhm.2012.02.016
Google Scholar
[8]
Mahani, Y, Radzali, O. and Zuhailawati, H, 2011. Mechanical Alloying and Sintering of Nanostructured Tungsten Carbide-reinforced Copper Composite and its characterization, J. Mater Design, 32, pp.3293-3298.
DOI: 10.1016/j.matdes.2011.02.025
Google Scholar
[9]
Raghu, T, Sundaresan, R, Ramakrishnan, P and Rama-Mohan, T. R, 2009. Synthesis of Nanocrystalline Copper-Tungsten Alloys by Mechanical Alloying, Mater SciEngA, pp.438-441.
DOI: 10.1016/s0921-5093(00)01444-1
Google Scholar
[10]
Kim, J. C and Moon, I. H, 1998. Sintering of Nanostructured W-Cu Alloys Prepared by Mechanical Alloying, Nanostruct Mater, 10, pp.283-290.
DOI: 10.1016/s0965-9773(98)00065-8
Google Scholar
[11]
Kahtan, S. M and Azmi, R, 2012. The Role of Activator rich-W interboundary layer on Liquid Phase Sintering of W-pre-alloy Bronze Composites of Fe and Co Addition, Int. J. Refract Metals and Hard Mater, 35, pp.170-177.
DOI: 10.1016/j.ijrmhm.2012.04.016
Google Scholar
[12]
Johnson, J. I. and German, R. M, 1996. Solid State Contribution to Densification during Liquid Phase Sintering, Metall Mater Trans B, 27B, pp.901-909.
DOI: 10.1007/s11663-996-0003-1
Google Scholar
[13]
Boonymaneerat, Y. 2008. Effects of Low Content Activators on Low Temperature Sintering of Tungsten, J. Mater Process Tech 209(8). pp.4084-4087.
Google Scholar
[14]
Mondal, A, Upadhyaya, A and Agrawal, D, 2010. Comparative studies of Densification and Microstructural Development in W-18Cu Composites using Microwave and Conventional heating, Mater Research InnoVol 14, No5, pp.355-360.
DOI: 10.1179/143307510x12820854748638
Google Scholar
[15]
Manda, M, Singh, D, Gouthama, Murty, B. S, Sangal, S. and Mondal, K, 2014. Porous Copper template for partially Spark Plasma Sinterted Cu-Zn aggregate via Dezincification. [Online][Cited: 1207, 2014]. www. ias. ac. in/matersci/bmsjune2014/743. pd.
DOI: 10.1007/s12034-014-0001-x
Google Scholar
[16]
Kahtan, S. M, Azmi, R. and Ahmad, B. I, 2009. The Effects of Fe addition on Liquid Phase Sintering of W-bronze Composites, J. Alloys and Comp, 482, pp.447-454.
Google Scholar
[17]
Davies, D. D, 1993. A Note on the Dezincification of Brass and the Inhibititing effects of Elemental Additions, Copper Development Association Inc, Madison Avenue, New York, pp.1-9.
Google Scholar
[18]
Bengough, G. D. and May, R, 1924. Dezincification of 70-30 Brass, J. Inst. Met 32, p.81.
Google Scholar
[19]
Ardestani, M, Rezaie, H. R, Arabi, H. and Razavizadeh, H, 2009. The Effects of Sintering Temperature On Densification of Nanoscale dispersed W-20-40% wt. Cu Composite Powder, Int. J. Refract Metals and Hard Mater, 27, pp.862-867.
DOI: 10.1016/j.ijrmhm.2009.04.004
Google Scholar
[20]
Ozkal, B, Upadhyaya, A, Ovecoglu, M. L and German, R. M, 2004. Realtime Sintering Observations in W-Cu System: Accelerated Rearrangment Densification via Copper Coated Tungsten Powder Approach, EuroPM, pp.1-7.
Google Scholar
[21]
Desch, C. H. and Whyte, S, 1914. Effects of Alloy Composition on Corrosion Product Mass Generated during immersion in a 5% NaCl Solution, J. Inst Met, 11, p.235.
Google Scholar