[1]
I. F. Akyildiz and J. M. Jornet, Electromagnetic wireless nanosensor networks, Nano Communication Networks, vol. 1, pp.3-19.
DOI: 10.1016/j.nancom.2010.04.001
Google Scholar
[2]
Tijjani Adam et al. Simulation of Passive Fluid Driven Micromixer for Fast Reaction Assays in Nano Lab-on-chip Domain. Elsevier Procedia Engineering 50 (2012) 416-425 (Scopus Conference ICASCE 2012).
DOI: 10.5162/imcs2012/p1.9.21
Google Scholar
[3]
R. H. Prasad et al, Fabrication and Characterization of IDE Based Sensor through Conventional Lithography Method, Adv. Mater. Res., vol. 832, p.517–521, Nov. (2013).
DOI: 10.4028/www.scientific.net/amr.832.517
Google Scholar
[4]
Herschkovitz Y et al. An electrochemical biosensor for formaldehyde. Journal of Electroanalytical Chemistry. 2000; 491: 182-7.
Google Scholar
[5]
Kawamura K et al, Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome. Sensors and Actuators B: Chemical. 2005; 105: 495-501.
DOI: 10.1016/j.snb.2004.07.010
Google Scholar
[6]
Wang J et al, An enrichment method to detect low concentration formaldehyde. Sensors and Actuators B: Chemical. 2008; 134: 1010-5.
Google Scholar
[7]
C. Lee et al, A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection, vol. 122, p.503–510, (2007).
DOI: 10.1016/j.snb.2006.06.018
Google Scholar
[8]
Enhancement of NH3 Gas Sensitivity at Room Temperature by Carbon Nanotube-Based Sensor Coated with Co Nanoparticles Lich Quang Nguyen et al, Sensors 2013, 13, 1754-1762; doi: 10. 3390/s130201754.
DOI: 10.3390/s130201754
Google Scholar
[9]
T. S. Dhahi et al, pH measurement using micro gap structure, vol. 6, no. 2, p.189–193, (2011).
Google Scholar
[10]
H. Mu et al, Fabrication and Characterization of Amino Group Functionalized Multiwall Carbon Nanotubes ( MWCNT ) Formaldehyde Gas Sensors, vol. 14, no. 7, p.2362–2368, (2014).
DOI: 10.1109/jsen.2014.2311041
Google Scholar
[11]
M. Spectrometry, Gas Chromatography / Detection and Quantification of Formaldehyde by Derivatization with Pentafluorobenzylhydroxyl Amine in Pharmaceutical Excipients by Static Headspace GC / MS.
Google Scholar
[12]
Xie H et al. Multi-wall carbon nanotube gas sensors modified with amino-group to detect low concentration of formaldehyde. Sens Actuators, B. 2011; doi: 10. 1016/j. snb. 2011. 12. 112.
DOI: 10.1016/j.snb.2011.12.112
Google Scholar
[13]
T. S. Dhahi et al, Electrical characterization of in-house fabricated polysilicon micro-gap for yeast concentration measurement, vol. 3, no. August, p.246–254, (2011).
Google Scholar
[14]
M. Bossel and M. Demierre, Simple and Low Cost Fabrication Of Embedded Microchannels By Using A New Thick-film Photoplastic - Solid State Sensors and Actuators, 1997. TRANSDUCERS '97 Chicago., 1997 International Conference o, p.1419–1422, (1997).
DOI: 10.1109/sensor.1997.635730
Google Scholar
[15]
K. L. Foo et al, Study of ZnO micro-gap on SiO2/Si substrate by conventional lithography method for pH measurement, 2012 10th IEEE Int. Conf. Semicond. Electron., p.191–194, Sep. (2012).
DOI: 10.1109/smelec.2012.6417121
Google Scholar
[16]
A. Subramanian et al, Dielectrophoretic Nanoassembly of Individual Carbon Nanotubes onto Nanoelectrodes Overview of Individual Nanotube Based, (2005).
Google Scholar
[17]
P. Lv et al., Study on a micro-gas sensor with SnO2–NiO sensitive film for indoor formaldehyde detection, Sensors Actuators B Chem., vol. 132, no. 1, p.74–80, May (2008).
DOI: 10.1016/j.snb.2008.01.018
Google Scholar
[18]
T. Chen et al, Effects of calcining temperature on the phase structure and the formaldehyde gas sensing properties of CdO-mixed In2O3, Sensors Actuators B Chem., vol. 135, no. 1, p.219–223, Dec. (2008).
DOI: 10.1016/j.snb.2008.08.013
Google Scholar
[19]
L. Liu et al, UV assisted chemical gas sensing of nanoporous TiO2 at low temperature, p.698–701, (2012).
Google Scholar
[20]
Y. M. Zhang et al, A high sensitivity gas sensor for formaldehyde based on silver doped lanthanum ferrite, Sensors Actuators B Chem., vol. 190, p.171–176, Jan. (2014).
DOI: 10.1016/j.snb.2013.08.046
Google Scholar
[21]
L. Zhang et al. High sensitive and selective formaldehyde sensors based on nanoparticle-assembled ZnO micro-octahedrons synthesized by homogeneous precipitation method, Sensors Actuators B Chem., vol. 160, no. 1, p.364–370, Dec. (2011).
DOI: 10.1016/j.snb.2011.07.062
Google Scholar