[1]
Bello, A.L.: Imputation techniques in regression analysis: Looking closely at their implementation. Computational Statistics & Data Analysis 20, pp.45-57 (1995).
DOI: 10.1016/0167-9473(94)00024-d
Google Scholar
[2]
Little, R.J.A.: Robust estimation of the mean and covariance matrix from data with missing values, Applied Statistics 37, pp.23-28 (1998).
DOI: 10.2307/2347491
Google Scholar
[3]
Donders, A.R. T, van der Heijden, G.J.M.G., Stijnen, T., Moons, K.G.M.: Review: A gentle introduction to imputation of missing values. Journal of Clinical Epidemiology 59, pp.1087-1091 (2006).
DOI: 10.1016/j.jclinepi.2006.01.014
Google Scholar
[4]
Bono, C., Ried, L.D., Kimberlin, C., Vogel, B., 2007: Missing data on the Center for Epidemiologic Studies Depression Scale: A comparison of 4 imputation techniques. Research in Social and Administrative Pharmacy 3, pp.1-27 (2007).
DOI: 10.1016/j.sapharm.2006.04.001
Google Scholar
[5]
Plaia, A., Bondi, A.L.: Single imputation method of missing values in environmental pollution data sets. Atmospheric Environment 40, pp.7316-7330 (2006).
DOI: 10.1016/j.atmosenv.2006.06.040
Google Scholar
[6]
van der Heijden, G.J.M.G., Donders, A.R.T., Stijnen, T., Moons, K.G.M.: Imputation of missing values is superior to complete case analysis and the missing-indicator method in multivariable diagnostic research: A clinical example. Journal of Clinical Epidemiology 59, pp.1102-1109 (2006).
DOI: 10.1016/j.jclinepi.2006.01.015
Google Scholar
[7]
Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., Kolehmainen, M.: Methods for imputation of missing values in air quality data sets. Atmospheric Environment 38, pp.2895-2907 (2004).
DOI: 10.1016/j.atmosenv.2004.02.026
Google Scholar
[8]
Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data. Wiley, New York (1987).
Google Scholar
[9]
Schafer, J.L.: Analysis if incomplete multivariate data. Monographs on Statistics and Applied Probability No. 72. Chapman & Hall, London (1997).
Google Scholar
[10]
Barzi, F., Woodward, M.: Imputations of Missing Values in practice: Results from imputations of serum cholesterol in 28 cohort studies. American Journal of Epidemiology 160, 34-45 (2004).
DOI: 10.1093/aje/kwh175
Google Scholar
[11]
Olinsky, A., Chen, S., Harlow, L.: The comparative efficacy of imputation methods for missing data in structural equation modelling. European Journal of Operational Research, 151, pp.53-79 (2002).
DOI: 10.1016/s0377-2217(02)00578-7
Google Scholar
[12]
Li, K.H., Le, N.D., Sun, L., Zidek, J.V.: Spatial-temporal models for ambient hourly PM10 in Vancouver. Environ-metrics 10, 321-328 (1999).
DOI: 10.1002/(sici)1099-095x(199905/06)10:3<321::aid-env355>3.0.co;2-d
Google Scholar
[13]
Noor, N.M., Yahaya, A.S., Ramli, N.A., Abdullah, M.M.A.: Estimation of missing values in air pollution data using single imputation techniques. ScienceAsia 34, pp.341-345 (2008).
Google Scholar
[14]
Weiss, A. and Hays, C.Y.: Calculating daily mean air temperatures by different methods: implications from a non-linear algorithm. Agricultural and Forest Meteorology 128, pp.57-65 (2005).
DOI: 10.1016/j.agrformet.2004.08.008
Google Scholar
[15]
Engels, J.M., Diehr, P.: Imputation of missing longitudinal data: A comparison of methods. Journal of Clinical Epidemiology 56, pp.968-976 (2003).
DOI: 10.1016/s0895-4356(03)00170-7
Google Scholar
[16]
Chen, J.L., Islam, S., and Biswas, P.: Nonlinear Dynamics of Hourly Ozone Concentrations: Nonparametric Short Term Prediction. Atmospheric Environment 32, pp.1839-1848 (1998).
DOI: 10.1016/s1352-2310(97)00399-3
Google Scholar