Optimization Method in 2-D Problems of Material Body Cloaking

Article Preview

Abstract:

We consider the control problem for two-dimensional model of the electromagnetic field which describes the scattering E-polarized electromagnetic waves in an infinite homogeneous medium containing permeable dielectric obstacle with a partially covered (for masking) boundary. The role of control function is played by surface conductivity entering the impedance boundary condition on the covered part of the boundary and the index of refraction of the dielectric obstacle. We prove the solvability of the control problem, derive the optimality system which describes the necessary conditions of an extremum and develop an efficient numerical algorithm for the solution of the control problem.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

436-441

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.B. Pendry, D. Shurig, D.R. Smith, Controlling electromagnetic fields, Science. 312 (2006) 1780-1789.

Google Scholar

[2] A.E. Dubinov, L.A. Mytareva, Invisible cloaking of material bodies using the wave flow method, Phys. Usp. 53 (2010) 455-479.

DOI: 10.3367/ufne.0180.201005b.0475

Google Scholar

[3] H. Liu, T. Zhou, Transformation optics and approximate cloaking, Contemp. Math. 559 (2011) 65-83.

Google Scholar

[4] H. Liu, T. Zhou, Two dimensional invisibility cloaking via transformation optics, Disc. Cont. Dyn. Syst. Ser. A. 31 (2011) 526-543.

Google Scholar

[5] G.V. Alekseev, Optimization in problems of material-body cloaking using the wave-flow method, Dokl. Phys. 58 (2013) 147-151.

DOI: 10.1134/s1028335813040071

Google Scholar

[6] G.V. Alekseev, Control of boundary impedance in two-dimensional material-body cloaking the wave flow method, Comp. Math. and Math. Phys. 53 (2013) 1853-1869.

DOI: 10.1134/s0965542513120014

Google Scholar

[7] G.V. Alekseev, A.V. Lobanov, Stability estimates for the solution to inverse extremal problems for the Helmholtz equation, J. Appl. Ind. Math. 7 (2013) 1-13.

DOI: 10.1134/s1990478913030034

Google Scholar

[8] G.V. Alekseev, Cloaking via impedance boundary condition for 2-D Helmholtz equation, Appl. Anal. 93 (2014) 254-268.

DOI: 10.1080/00036811.2013.768340

Google Scholar

[9] G.V. Alekseev, V.A. Levin, Optimization method of searching parameters of an inhomoge-neous liquid medium in the acoustic cloaking problem, Dokl. Phys. 59 (2014) 89-93.

DOI: 10.1134/s1028335814020013

Google Scholar

[10] Yu. Yu. Fershalov, Technique for physical simulation of gasodynamics processes in the turbomachine flow passages, Russ. Aeron. 55 (2012) 424-429.

DOI: 10.3103/s1068799812040186

Google Scholar

[11] Ju. Yu. Fershalov, T.V. Sazonov, Experimental research of the nozzles, Advan. Mater. Res. 915-916 (2014) 345-348.

DOI: 10.4028/www.scientific.net/amr.915-916.345

Google Scholar

[12] M. Yu. Fershalov, A. Yu. Fershalov, Yu. Ya. Fershalov, Calculation of reactivity degree for axial lowaccount turbines with small emergence angles on nozzle devices, Advan. Mater. Res. 915-916 (2014) 341-345.

DOI: 10.4028/www.scientific.net/amr.915-916.341

Google Scholar

[13] G.V. Alekseev, Solvability of stationary boundary control problems for thermal convection equations, Sib. Math. Zh. 39 (1998) 982-998.

DOI: 10.1007/bf02672906

Google Scholar

[14] G.V. Alekeev, D.A. Tereshko, On solvability of inverse extremal problem for stationary equations of viscous heat conducting fluid, J. Inv. Ill-Posed Problems 6 (1998) 521-562.

DOI: 10.1515/jiip.1998.6.6.521

Google Scholar

[15] G.V. Alekseev, D.A. Tereshko, The stationary optimal control problems for the viscous fluid equations, Sib. J. Indus. Math. 1 (1998) 22-44.

Google Scholar

[16] G.V. Alekseev, D.A. Tereshko, Extremum problems of boundary control for stationary thermal convection equations, J. Appl. Mech. Tecn. Phys. 4 (2010) 72-84.

Google Scholar

[17] G.V. Alekseev, I.S. Vakhitov, O.V. Soboleva, Stability estimates in problems of identification for the equation of convection-diffusions-reactions, Comput. Math. and Math. Phys. 52 (2012) 1635-1649.

DOI: 10.1134/s0965542512120032

Google Scholar

[18] Information on: www. freefem. org.

Google Scholar