The Effect of Electrolytic Hydrogenation on the Plastic Flow of Aluminum Alloy

Article Preview

Abstract:

The effect of hydrogen embrittlement on the plastic flow of aluminum alloy D1 was investigated. The studies were performed for the test samples of aluminum alloy subjected to electrolytic hydrogenation in a three electrode electrochemical cell at a controlled constant cathode potential. It is found that the mechanical properties and plastic flow curves of aluminum alloy are affected adversely by hydrogen embrittlement. The hydrogenated counterpart of alloy has a lower degree of ductility relative to the original alloy. The deformation diagrams were examined for the deformed samples of aluminum alloy. These are found to show all the plastic flow stages: the linear, parabolic and pre-failure stages would occur for the respective values of the exponent n from the Ludwik-Holomon equation. Microhardness tests were performed for as-treated aluminum alloy D1. Using scanning electron microscopy method, the changes in the fracture surface were investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-64

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.M. Polyanski, Role of hydrogen embrittlement in the corrosion cracking of aluminum alloys, Sov. Mater. Sci., 21 (1985) 301-309.

Google Scholar

[2] N.J. H. Holroyd, A.K. Vasudevan, L. Christodolou, Aluminum Alloys, ed. A.K. Vasudevan and R.D. Doherty, London: Academic Press, (1989).

Google Scholar

[3] C. Larignon, J. Alexis, E. Andrieu et al. The contribution of hydrogen to the corrosion of 2024 aluminium alloy exposed to thermal and environmental cycling in chloride media, Corr. Sci., 69 (2013) 211-220.

DOI: 10.1016/j.corsci.2012.12.005

Google Scholar

[4] E. Lunarska, O. Chernyaeva, Effect of precipitates on hydrogen transport and hydrogen embrittlement of aluminum alloys, Mater. Sci., 40 (2004) 399-407.

DOI: 10.1007/s11003-005-0049-2

Google Scholar

[5] M.B. Kannan, V.S. Raja, Hydrogen embrittlement susceptibility of over aged 7010 Al-alloy, J. Mater. Sci., 41(2006) 5495-5499.

DOI: 10.1007/s10853-006-0287-1

Google Scholar

[6] S.J. Kim, M.S. Han, S.K. Jang, Electrochemical characteristics of Al-Mg alloy in seawater for leisure ship: Stress corrosion cracking and hydrogen embrittlement, Kor. J. Chem. Eng., 26 (2004) 250-257.

DOI: 10.1007/s11814-009-0042-9

Google Scholar

[7] S. Kumar, T. Namboodhiri, Precipitation hardening and hydrogen embrittlement of aluminum alloy AA7020, Bull. Mater. Sci., 34 (2011) 311-321.

DOI: 10.1007/s12034-011-0066-8

Google Scholar

[8] H.M. Nykyforchyn, O.P. Ostash, O.T. Tsyrul'nyk, I.M. Andreiko, Yu.V. Holovatyuk, Electrochemical evaluation of the in-service degradation of an aircraft aluminum alloy, Mater. Sci., 44 (2008) 254-259.

DOI: 10.1007/s11003-008-9067-1

Google Scholar

[9] S.A. Barannikova, Dispersion of the plastic strain localization waves, Tech. Phys. Lett. 30 (2004) 338-340.

DOI: 10.1134/1.1748618

Google Scholar

[10] S.A. Barannikova, Localization of stretching strain in doped carbon gamma-Fe single crystals, Tech. Phys. 45 (2000) 1368-1370.

DOI: 10.1134/1.1318982

Google Scholar

[11] L.B. Zuev, V.I. Danilov, S.A. Barannikova, I.Y. Zykov, A new type of plastic deformation waves in solids, Appl. Phys. A 71 (2000) 91-94.

DOI: 10.1007/pl00021098

Google Scholar

[12] L.B. Zuev, S.A. Barannikova, M.V. Nadezhkin, V.A. Mel'nichuk, Tensile plastic strain localization in single crystals of austenite steel electrolytically saturated with hydrogen, Techn. Phys. Lett. 37 (2011) 793-796.

DOI: 10.1134/s1063785011090057

Google Scholar

[13] S.A. Barannikova, A.G. Lunev, M.V. Nadezhkin, L.B. Zuev, Effect of hydrogen on plastic strain localization of construction steels, Adv. Mater. Res., 880 (2014) 42-47.

DOI: 10.4028/www.scientific.net/amr.880.42

Google Scholar

[14] L.B. Zuev, V.I. Danilov, S.A. Barannikova, V.V. Gorbatenko, Autowave model of localized plastic flow of solids, Phys. Wav. Phen. 17 (2009) 1-10.

DOI: 10.3103/s1541308x09010117

Google Scholar

[15] R.H. Jones, D.R. Baer, M.J. Danielson, J.S. Vetrano, Role of magnesium in the stress corrosion cracking of an Al-Mg alloy, Metall. and Mater. Trans A, 32A (2001) 1699-1711.

DOI: 10.1007/s11661-001-0148-0

Google Scholar

[16] E. Charitidou, G. Papapolymerou, G.N. Haidemenopoulos et al, Characterization of trapped hydrogen in exfoliation corroded aluminum alloy 2024, Scrip. Mater., 41 (1999) 1327-1332.

DOI: 10.1016/s1359-6462(99)00292-4

Google Scholar

[17] R.H. Jones, The influence of hydrogen on the stress-corrosion cracking of low-strength Al-Mg alloys, JOM-J. Miner. Met. & Mater. Soc., 55 (2003) 42-46.

DOI: 10.1007/s11837-003-0225-5

Google Scholar

[18] J.R. Scully, G.A. Young, Jr., and S.W. Smith, Hydrogen Solubility, Diffusion and Trapping in High Purity Aluminum and Selected Al-Base Alloy, Mater. Sci. For., 331-3 (2000) 1583-1599.

DOI: 10.4028/www.scientific.net/msf.331-337.1583

Google Scholar

[19] Y. Yagodzinskyy, O. Todoshchenko, S. Papula, H. Hänninen, Hydrogen solubility and diffusion in austenitic stainless steels studied with thermal desorption spectroscopy, Steel Res. Int. 82 (2011) 20-25.

DOI: 10.1002/srin.201000227

Google Scholar

[20] L. Zazhigayev, A. Kishyan, Yu. Romanikov, 1987 Methods for planning a physical experiment and data processing, Moskow: Atomizdat, 232.

Google Scholar

[21] V. Danilov, A. Bochkaryova, L. Zuev, Macrolocalization of deformation in the metal with intermittent flow, Phys. Met. Metal., 107 (2009) 616–623.

DOI: 10.1134/s0031918x0906012x

Google Scholar