[1]
T. A. Shedd, Characteristics of the liquid film in horizontal two-phase flow. Thesis for Doctor of Phil. in Mechanical Engineering, the University of Illinois at Urbana-Champaign, (2001).
Google Scholar
[2]
L. Weidong, Z. Fangde, L. Rongxian, Z. Lixing, Experimental study on the characteristics of liquid layer and disturbance waves in horizontal annular flow, Journal of Thermal Science, Vol. 8 (1999) 235-241.
Google Scholar
[3]
P. Sawant, M. Ishii, T. Hazuku, T. Takamasa, M. Mori, Properties of disturbance waves in vertical annular two-phase flow, Nuclear Engineering and Design 238 (2008) 3528–3541.
DOI: 10.1016/j.nucengdes.2008.06.013
Google Scholar
[4]
B.J. Azzopardi, Disturbance wave frequencies, velocities and spacing in vertical annular two-phase flow. Nuclear Engineering and Design, 92(2) (1986) 121–133.
DOI: 10.1016/0029-5493(86)90240-2
Google Scholar
[5]
N.S. Wilkes, B.J. Azzopardi, C.P. Thompson, Wave coalescence and entrainment in vertical annular two-phase flow. International Journal of Multiphase Flow, 9(4) (1983) 383-398.
DOI: 10.1016/0301-9322(83)90095-2
Google Scholar
[6]
K. Mori, H. Yoshida, K. Nakano, Y. Shiomi, Effects of Liquid Viscosity on Inception of Disturbance Waves and Droplets in Gas–Liquid Annular Two-Phase Flow, Heat Transfer—Asian Research, 36(8) (2007) 529-541.
DOI: 10.1002/htj.20176
Google Scholar
[7]
T. Fukano, Measurement of time varying thickness of liquid film flowing with high speed gas flow by CECM, Nuclear Engineering & Design 184 (1998) 363–377.
DOI: 10.1016/s0029-5493(98)00209-x
Google Scholar
[8]
A. Setyawan, Indarto, Deendarlianto, Experimental Investigation on Disturbance Wave Velocity and Frequency in Air-Water Horizontal Annular Flow, Modern Applied Science, 8 (2014) 84-96.
DOI: 10.5539/mas.v8n4p84
Google Scholar
[9]
J.M. Mandhane, G.A. Gregory, K. Aziz, A flow pattern map for gas-liquid flow in horizontal pipes, Int. J. Multiphase Flow 1 (1974) 537-553.
DOI: 10.1016/0301-9322(74)90006-8
Google Scholar
[10]
T. Fukano, T. Furukawa, Prediction of the effects of liquid viscosity on interfacial shear stress and frictional pressure drop in vertical upward gas-liquid annular flow, Int. J. Multiphase Flow. 24 (1998) 587-603.
DOI: 10.1016/s0301-9322(97)00070-0
Google Scholar
[11]
D. Schubring, T.A. Shedd, Wave behavior in horizontal annular air–water flow. International Journal of Multiphase Flow 34 (2008) 636–646.
DOI: 10.1016/j.ijmultiphaseflow.2008.01.004
Google Scholar
[12]
H. Han, Z. Zhu, K. Gabriel, A study on the effect of gas flow rate on the wave characteristics in two-phase gas–liquid annular flow. Nuclear Engineering and Design 236 (2006) 2580–2588.
DOI: 10.1016/j.nucengdes.2006.03.015
Google Scholar
[13]
I. Mantilla, Mechanistic Modeling of Liquid Entrainment in Gas in Horizontal Pipes. Dissertation for Doctor of Philosophy in Petroleum Engineering, the University of Tulsa, (2008).
Google Scholar
[14]
K. Mori, Y. Kondo, M. Kaji, T. Yagishita, Effects of liquid viscosity on characteristics of waves in gas-liquid two-phase flow, JSME Int. Journal 42 (1999) 658-666.
DOI: 10.1299/jsmeb.42.658
Google Scholar