[1]
H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, P. M. Ajayan. Direct synthesis of long single-walled carbon nanotubes strands. Science. 296 (2002) 884-886.
DOI: 10.1126/science.1066996
Google Scholar
[2]
M.Z. Selamat, M.S. Ahmad, M.A. Mohd Daud, N. Ahmad. Effect of carbon nanotubes on properties of graphite/carbon black/polypropylene nanocomposites. Adv. Mater. Res. 795 (2013) 29-34.
DOI: 10.4028/www.scientific.net/amr.795.29
Google Scholar
[3]
I.S. Mohamad, S.B.A. Hamid, W.M. Chin, K.H. Yau, A. Samsuri. Nanofluids-based nanocarbons: an investigation of thermal conductivity performance. J. Mech. Eng. Tech. 3 (2011) 79-87.
Google Scholar
[4]
C.W. Lam, J.T. James, R. McCluskey, R.L. Hunter. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77(2004) 126-134.
DOI: 10.1093/toxsci/kfg243
Google Scholar
[5]
Y. Wu, J. Hudson, Q. Lu, J. Moore, A. Mount, A. Rao. Coating single-walled carbon nanotubes with phospholipids. J. Phys. Chem. B. 110 (2006) 2475-2478.
DOI: 10.1021/jp057252c
Google Scholar
[6]
A. Helland, P. Wick, A. Koehler, K. Schmid, C. Som. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ. Health Persp. 115 (2007) 1125-1131.
DOI: 10.1289/ehp.9652
Google Scholar
[7]
H. Kuzmany, A. Kukovecv, F. Simon, M. Holzweber, Ch. Kramberger, T. Pitchler. Functionalization of carbon nanotubes. Synthetic Met. 141 (2004) 113-122.
DOI: 10.1016/j.synthmet.2003.08.018
Google Scholar
[8]
H. Ali-Boucetta, A. Nunes, R. Sainz, M.A. Herrero, B. Tian, M. Prato, A. Bianco, K. Kostarelos. Asbestos-like Pathogenicity of Long Carbon Nanotubes Alleviated by Chemical Functionalization. Angewandte Chemie International Ed. 52 (2013) 2274-2278.
DOI: 10.1002/anie.201207664
Google Scholar
[9]
C.M. Sayes, F. Liang, J.L. Hudson, J. Mendez, W. Guo, J.M. Beach. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161 (2006) 135.
DOI: 10.1016/j.toxlet.2005.08.011
Google Scholar
[10]
K. Balasubramanian, M. Burghard. Chemically functionalized carbon nanotubes. Small. 1 (2005) 180-192.
DOI: 10.1002/smll.200400118
Google Scholar
[11]
J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, Z. Du. Effect of chemical oxidation on the structure of single wall carbon nanotubes. J. Phys. Chem. B. 107 (2003) 3712-3718.
DOI: 10.1021/jp027500u
Google Scholar
[12]
L.G. Sarah, K.D. Thériault, A.M. Oickle, A.C. Tarasuk, H.A. Andreas. Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon. 2010) 1252–1261.
DOI: 10.1016/j.carbon.2009.11.050
Google Scholar
[13]
K. Hassan, M. Omid. Influence of surface oxidation on the morphological and crystallographic structure of multiwalled carbon nanotubes via different oxidants. J. Nanostruc. Chem. 3 (2013).
Google Scholar
[14]
S.C. Tsang, P.J.F. Harris, M.L.H. Green, M.L.H. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature. 362 (1993), 520-522.
DOI: 10.1038/362520a0
Google Scholar
[15]
Z.R. Yue, W. Jiang, L. Wang, S.D. Gardner, C.U. Pittman. Surface characterization of electrochemically oxidized carbon fibres. Carbon. 37 (1993) 1785-1796.
DOI: 10.1016/s0008-6223(99)00047-0
Google Scholar
[16]
T. Ramanathan, F.T. Fisher, R.S. Ruoff, L.C. Brinson. Apparent enhanced solubility of single wall carbon nanotubes in a deuterated acid mixture. Res. Lett. Nanotech. (2008).
DOI: 10.1155/2008/296928
Google Scholar
[17]
K. Pradip, C. Arup. Carboxylic acid functionalized multi-walled carbon nanotube doped polyanilin for chloroform sensors. Sensor Actuator B. 183 (2013) 25-33.
DOI: 10.1016/j.snb.2013.03.093
Google Scholar