The Influence of Nitric Acid Treatment on the Crystallographic Structure of Multiwalled Carbon Nanotubes

Article Preview

Abstract:

Commercially available Multiwalled Carbon Nanotubes (MWCNTs) were refluxed with nitric acid in order to improve the density of the acidic surface functional groups. The formation of oxygen containing functional groups may lead to surface enhancement of MWCNTs for further modifications. The crude MWCNTs were refluxed in nitric acid at 100 °C for time ranging between 3 to 24 h. The influence of treatment time on crystalline structure was investigated using X-Ray Diffraction (XRD); the results confirmed that all treated MWCNTs are crystalline. The density of the surface functional groups on treated MWCNTs was examined by Fourier Transform Infrared (FTIR). The FTIR spectrums revealed a strong vibration band at 1739, 1219, 1369 cm-1 that indicates covalently bound acidic surface functional groups existed on the treated MWCNTs. The amount of acidic groups increased with the reflux time up to 15 h treatment as measured by an acid-base Boehm titration. The vibrational spectroscopy of these functional groups also increased with the increasing reflux time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

369-373

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, P. M. Ajayan. Direct synthesis of long single-walled carbon nanotubes strands. Science. 296 (2002) 884-886.

DOI: 10.1126/science.1066996

Google Scholar

[2] M.Z. Selamat, M.S. Ahmad, M.A. Mohd Daud, N. Ahmad. Effect of carbon nanotubes on properties of graphite/carbon black/polypropylene nanocomposites. Adv. Mater. Res. 795 (2013) 29-34.

DOI: 10.4028/www.scientific.net/amr.795.29

Google Scholar

[3] I.S. Mohamad, S.B.A. Hamid, W.M. Chin, K.H. Yau, A. Samsuri. Nanofluids-based nanocarbons: an investigation of thermal conductivity performance. J. Mech. Eng. Tech. 3 (2011) 79-87.

Google Scholar

[4] C.W. Lam, J.T. James, R. McCluskey, R.L. Hunter. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77(2004) 126-134.

DOI: 10.1093/toxsci/kfg243

Google Scholar

[5] Y. Wu, J. Hudson, Q. Lu, J. Moore, A. Mount, A. Rao. Coating single-walled carbon nanotubes with phospholipids. J. Phys. Chem. B. 110 (2006) 2475-2478.

DOI: 10.1021/jp057252c

Google Scholar

[6] A. Helland, P. Wick, A. Koehler, K. Schmid, C. Som. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ. Health Persp. 115 (2007) 1125-1131.

DOI: 10.1289/ehp.9652

Google Scholar

[7] H. Kuzmany, A. Kukovecv, F. Simon, M. Holzweber, Ch. Kramberger, T. Pitchler. Functionalization of carbon nanotubes. Synthetic Met. 141 (2004) 113-122.

DOI: 10.1016/j.synthmet.2003.08.018

Google Scholar

[8] H. Ali-Boucetta, A. Nunes, R. Sainz, M.A. Herrero, B. Tian, M. Prato, A. Bianco, K. Kostarelos. Asbestos-like Pathogenicity of Long Carbon Nanotubes Alleviated by Chemical Functionalization. Angewandte Chemie International Ed. 52 (2013) 2274-2278.

DOI: 10.1002/anie.201207664

Google Scholar

[9] C.M. Sayes, F. Liang, J.L. Hudson, J. Mendez, W. Guo, J.M. Beach. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161 (2006) 135.

DOI: 10.1016/j.toxlet.2005.08.011

Google Scholar

[10] K. Balasubramanian, M. Burghard. Chemically functionalized carbon nanotubes. Small. 1 (2005) 180-192.

DOI: 10.1002/smll.200400118

Google Scholar

[11] J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, Z. Du. Effect of chemical oxidation on the structure of single wall carbon nanotubes. J. Phys. Chem. B. 107 (2003) 3712-3718.

DOI: 10.1021/jp027500u

Google Scholar

[12] L.G. Sarah, K.D. Thériault, A.M. Oickle, A.C. Tarasuk, H.A. Andreas. Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon. 2010) 1252–1261.

DOI: 10.1016/j.carbon.2009.11.050

Google Scholar

[13] K. Hassan, M. Omid. Influence of surface oxidation on the morphological and crystallographic structure of multiwalled carbon nanotubes via different oxidants. J. Nanostruc. Chem. 3 (2013).

Google Scholar

[14] S.C. Tsang, P.J.F. Harris, M.L.H. Green, M.L.H. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature. 362 (1993), 520-522.

DOI: 10.1038/362520a0

Google Scholar

[15] Z.R. Yue, W. Jiang, L. Wang, S.D. Gardner, C.U. Pittman. Surface characterization of electrochemically oxidized carbon fibres. Carbon. 37 (1993) 1785-1796.

DOI: 10.1016/s0008-6223(99)00047-0

Google Scholar

[16] T. Ramanathan, F.T. Fisher, R.S. Ruoff, L.C. Brinson. Apparent enhanced solubility of single wall carbon nanotubes in a deuterated acid mixture. Res. Lett. Nanotech. (2008).

DOI: 10.1155/2008/296928

Google Scholar

[17] K. Pradip, C. Arup. Carboxylic acid functionalized multi-walled carbon nanotube doped polyanilin for chloroform sensors. Sensor Actuator B. 183 (2013) 25-33.

DOI: 10.1016/j.snb.2013.03.093

Google Scholar