[1]
R. Sharma, C. Sharma, B. Kapoor. Antibacterial resistance: current problems and possible solutions, Indian J. Med. Sci. 59 (2005) 120.
DOI: 10.4103/0019-5359.15091
Google Scholar
[2]
D.M. Livermore. Bacterial resistance: origins, epidemiology, and impact, Clin. Infect. Dis. 36 (2003) S11-23.
Google Scholar
[3]
F.C. Tenover. Mechanisms of antimicrobial resistance in bacteria, Am. J. Med. 119 (2006) S3-S10.
Google Scholar
[4]
S.B. Levy, B. Marshall. Antibacterial resistance worldwide: causes, challenges and responses, Nat. Med. 10 (2004) S122-129.
DOI: 10.1038/nm1145
Google Scholar
[5]
L. Treccani, T. Yvonne, F. Meder, K. Pardun, K. Rezwan. Functionalized ceramics for biomedical, biotechnological and environmental applications, Acta Biomater. 9 (2013) 7115-7150.
DOI: 10.1016/j.actbio.2013.03.036
Google Scholar
[6]
D.V. Quang, P.B. Sarawade, A. Hilonga, J.K. Kim, Y.G. Chai, S.H. Kim, H.T. Kim. Preparation of amino functionalized silica micro beads by dry method for supporting silver nanoparticles with antibacterial properties, Colloid Surface A. 389 (2011).
DOI: 10.1016/j.colsurfa.2011.08.042
Google Scholar
[7]
O.G. Nik, B. Nohair, S. Kaliaguine. Aminosilanes grafting on FAU/EMT zeolite: Effect on CO2 adsorptive properties, Micropor. Mesopor. Mat. 143 (2011) 221–229.
DOI: 10.1016/j.micromeso.2011.03.002
Google Scholar
[8]
S. Fernandes, P. Sadocco, J. Causio, A.J. Silvestre, I. Mondragon, C.S. Freire. Antimicrobial pullulan derivative prepared by grafting with 3-aminopropyltrimethoxysilane: Characterization and ability to form transparent films, Food Hydrocolloid. 35 (2014).
DOI: 10.1016/j.foodhyd.2013.05.014
Google Scholar
[9]
Salim et al., Antibacterial activity of CTAB-modified zeolite NaY with different CTAB Loading, 4th ICOWOBAS-RAFSS, pp.3-5, Sep (2013).
Google Scholar
[10]
S. Mandal, D. Roy, R.V. Chaudhari, M. Sastry. Pt and Pd nanoparticles immobilized on amine-functionalized zeolite: Excellent catalysts for hydrogenation and heck reactions, Chem. Mater. 16 (2004) 3714–3724.
DOI: 10.1021/cm0352504
Google Scholar
[11]
N. Iqbal, M.R.A. Kadir, N.A.N. N Malek, N.H. Mahmood, M.R. Murali, T. Kamarul. Rapid microwave assisted synthesis and characterization of nanosized silver-doped hydroxyapatite with antibacterial properties, Mater. Lett. 89 (2012) 118–122.
DOI: 10.1016/j.matlet.2012.08.057
Google Scholar
[12]
K. Mukhopadhyay, S. Phadtare, V.P. Vinod, A. Kumar, M. Rao, R.V. Chaudhari, M. Sastry. Gold nanoparticles assembled on amine-functionalized Na−Y zeolite: A biocompatible surface for enzyme immobilization, Langmuir. 19 (2003) 3858–3863.
DOI: 10.1021/la0268202
Google Scholar
[13]
M. Alkan, G. Tekin, H. Namli. FTIR and zeta potential measurements of sepiolite treated with some organosilanes, Micropor. Mesopor. Mat. 84 (2005) 75-83.
DOI: 10.1016/j.micromeso.2005.05.016
Google Scholar
[14]
F. Piscitelli, P. Posocco, R. Toth, M. Fermeglia, S. Pricl, G. Mensitieri, M. Lavorgna. Sodium montmorillonite silylation: Unexpected effect of the aminosilane chain length, J. Colloid Interf. Sci. 351 (2010) 108-115.
DOI: 10.1016/j.jcis.2010.07.059
Google Scholar
[15]
B. Gottenbos, D.W. Grijpma, H.C.V.D. Mei, J. Feijen, H.J. Busscher. Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria, J. Antimicrob. Chemoth. 48 (2001) 7-13.
DOI: 10.1093/jac/48.1.7
Google Scholar
[16]
H.Z. Zardini, A. Amiri, M. Shanbedi, M. Maghrebi, M. Baniadam. Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method, Colloid Surface B. 92 (2012) 196-202.
DOI: 10.1016/j.colsurfb.2011.11.045
Google Scholar
[17]
D. Kregiel. Advances in biofilm control for food and beverage industry using organo silane technology: A review, Food Control, 40 (2014) 32–40.
DOI: 10.1016/j.foodcont.2013.11.014
Google Scholar
[18]
G.J. Tortora, B.R. Funke, C.L. Case, Microbiology: An introduction. ninth ed., Pearson Benjamin Cummings, San Francisco, CA, (2007).
Google Scholar
[19]
X. Cai, M. Lin, S. Tan, W. Mai, Y. Zhang, Z. Liang, X. Zhang. The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity, Carbon, 50 (2012).
DOI: 10.1016/j.carbon.2012.02.002
Google Scholar