Antibacterial Activity of Amine-Functionalized Zeolite NaY against Staphylococcus aureus ATCC6538 and Escherichia coli ATCC11229

Article Preview

Abstract:

The antibacterial activity of functionalized zeolite NaY (CBV100) with different concentrations of 3-aminopropyltriethoxysilane (APTES) (0.01, 0.05, 0.20 and 0.40 M) was studied against Staphylococcus aureus ATCC 6538 (Gram positive) and Escherichia coli ATCC 11229 (Gram negative) through disc diffusion technique (DDT). The characterization of functionalized zeolite NaY with fourier transform infrared (FTIR) spectroscopy indicated the attachment of APTES on zeolite NaY. Through DDT, the inhibition zone of functionalized zeolite NaY increased proportionally to the amount of the amine-functional group attached onto zeolite NaY. Functionalized zeolite NaY showed higher antibacterial activity against Gram-positive compared to Gram-negative bacteria. It can be concluded from this study that amine-functionalized zeolite NaY shows evidence of antibacterial activities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

402-406

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Sharma, C. Sharma, B. Kapoor. Antibacterial resistance: current problems and possible solutions, Indian J. Med. Sci. 59 (2005) 120.

DOI: 10.4103/0019-5359.15091

Google Scholar

[2] D.M. Livermore. Bacterial resistance: origins, epidemiology, and impact, Clin. Infect. Dis. 36 (2003) S11-23.

Google Scholar

[3] F.C. Tenover. Mechanisms of antimicrobial resistance in bacteria, Am. J. Med. 119 (2006) S3-S10.

Google Scholar

[4] S.B. Levy, B. Marshall. Antibacterial resistance worldwide: causes, challenges and responses, Nat. Med. 10 (2004) S122-129.

DOI: 10.1038/nm1145

Google Scholar

[5] L. Treccani, T. Yvonne, F. Meder, K. Pardun, K. Rezwan. Functionalized ceramics for biomedical, biotechnological and environmental applications, Acta Biomater. 9 (2013) 7115-7150.

DOI: 10.1016/j.actbio.2013.03.036

Google Scholar

[6] D.V. Quang, P.B. Sarawade, A. Hilonga, J.K. Kim, Y.G. Chai, S.H. Kim, H.T. Kim. Preparation of amino functionalized silica micro beads by dry method for supporting silver nanoparticles with antibacterial properties, Colloid Surface A. 389 (2011).

DOI: 10.1016/j.colsurfa.2011.08.042

Google Scholar

[7] O.G. Nik, B. Nohair, S. Kaliaguine. Aminosilanes grafting on FAU/EMT zeolite: Effect on CO2 adsorptive properties, Micropor. Mesopor. Mat. 143 (2011) 221–229.

DOI: 10.1016/j.micromeso.2011.03.002

Google Scholar

[8] S. Fernandes, P. Sadocco, J. Causio, A.J. Silvestre, I. Mondragon, C.S. Freire. Antimicrobial pullulan derivative prepared by grafting with 3-aminopropyltrimethoxysilane: Characterization and ability to form transparent films, Food Hydrocolloid. 35 (2014).

DOI: 10.1016/j.foodhyd.2013.05.014

Google Scholar

[9] Salim et al., Antibacterial activity of CTAB-modified zeolite NaY with different CTAB Loading, 4th ICOWOBAS-RAFSS, pp.3-5, Sep (2013).

Google Scholar

[10] S. Mandal, D. Roy, R.V. Chaudhari, M. Sastry. Pt and Pd nanoparticles immobilized on amine-functionalized zeolite: Excellent catalysts for hydrogenation and heck reactions, Chem. Mater. 16 (2004) 3714–3724.

DOI: 10.1021/cm0352504

Google Scholar

[11] N. Iqbal, M.R.A. Kadir, N.A.N. N Malek, N.H. Mahmood, M.R. Murali, T. Kamarul. Rapid microwave assisted synthesis and characterization of nanosized silver-doped hydroxyapatite with antibacterial properties, Mater. Lett. 89 (2012) 118–122.

DOI: 10.1016/j.matlet.2012.08.057

Google Scholar

[12] K. Mukhopadhyay, S. Phadtare, V.P. Vinod, A. Kumar, M. Rao, R.V. Chaudhari, M. Sastry. Gold nanoparticles assembled on amine-functionalized Na−Y zeolite: A biocompatible surface for enzyme immobilization, Langmuir. 19 (2003) 3858–3863.

DOI: 10.1021/la0268202

Google Scholar

[13] M. Alkan, G. Tekin, H. Namli. FTIR and zeta potential measurements of sepiolite treated with some organosilanes, Micropor. Mesopor. Mat. 84 (2005) 75-83.

DOI: 10.1016/j.micromeso.2005.05.016

Google Scholar

[14] F. Piscitelli, P. Posocco, R. Toth, M. Fermeglia, S. Pricl, G. Mensitieri, M. Lavorgna. Sodium montmorillonite silylation: Unexpected effect of the aminosilane chain length, J. Colloid Interf. Sci. 351 (2010) 108-115.

DOI: 10.1016/j.jcis.2010.07.059

Google Scholar

[15] B. Gottenbos, D.W. Grijpma, H.C.V.D. Mei, J. Feijen, H.J. Busscher. Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria, J. Antimicrob. Chemoth. 48 (2001) 7-13.

DOI: 10.1093/jac/48.1.7

Google Scholar

[16] H.Z. Zardini, A. Amiri, M. Shanbedi, M. Maghrebi, M. Baniadam. Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method, Colloid Surface B. 92 (2012) 196-202.

DOI: 10.1016/j.colsurfb.2011.11.045

Google Scholar

[17] D. Kregiel. Advances in biofilm control for food and beverage industry using organo silane technology: A review, Food Control, 40 (2014) 32–40.

DOI: 10.1016/j.foodcont.2013.11.014

Google Scholar

[18] G.J. Tortora, B.R. Funke, C.L. Case, Microbiology: An introduction. ninth ed., Pearson Benjamin Cummings, San Francisco, CA, (2007).

Google Scholar

[19] X. Cai, M. Lin, S. Tan, W. Mai, Y. Zhang, Z. Liang, X. Zhang. The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity, Carbon, 50 (2012).

DOI: 10.1016/j.carbon.2012.02.002

Google Scholar