Autonomous Robot for Mining Exploration: A Structomatical and Kinematical Model for Uneven Ground

Article Preview

Abstract:

This paper deals with the analysis of the mechanical system of a self-propelled vehicle on the tires able to move on an uneven ground whilst his platform stays horizontally. It is question to simulate the movement of a desmodromic robot which moves in an environment represented by a 3D surface. The robot has a mechano-hydraulic system which is able to modify the geometry of chassis in the aim of maintaining the platform always at horizontal while in movement, no matter the soil configuration (of course between some limits).The horizontalisation mechanism with the rolling train hydraulically driven presents some difficulties because of the non holonomic constraints of the wheels ([1, 2]). In order to make the application of the multipoles theory in the structomatical model must be introduce some simplifications in the contact joint. Thus, the non holonomic joints are presented like gamma active joints (with the condition of controlled rolling/skidding).This is an extension of the general principle of mechanism formation ([3]) according who any mechanical structure can be broken in genes upon an unique formula (the genetic code of the mechanism).Because of the complexity of the calculus the study of mechanism was divided in a few chapters: geometrics, structomatics, kinematics, kinetostatics and dynamics etc. The uttermost important and difficult part is the kinematical model because of the non-linearity of the equations. This article presents the first two items; the others will be the matter of future papers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

183-188

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Labonté F., Giraud J. -L., Polotski V. – Telerobotics Issues in the Operation of a LHD Vehicle, CAMI'95: Canadian Conference on Computer Applications in the Mineral Industry, Montréal, October 22-25, p.672 – 681, (1995).

Google Scholar

[2] Polotski V. – Observer-Based Path-Tracking Controller for Forward/Backward Motion of an Articulated Vehicle, CAMI'95: Canadian Conference on Computer Applications in the Mineral Industry, Montréal, October 22-25, p.654 – 663, (1995).

Google Scholar

[3] Duca C., Simionescu I. – Un principe général de formation des mécanismes, Études et Recherches de Mécanique Appliquée, ( SCMA), nr. 1, Tom 32, 1973. (en roumain).

Google Scholar

[4] Siegwart R. , Nourbakhsh E. R. – Introduction to Autonomous Mobile Robots, MIT Press, (2004).

Google Scholar

[5] Chavand F., Colle E. – Perception de l'environnement en robotique, Hermes, (1998).

Google Scholar

[6] Dauchez P. – Applications non manufacturières de la robotique, Hermes, (2000).

Google Scholar

[7] Ge S. S., Lewis F. L. (editors) – Autonomous Mobile Robots. Sensing, Control, Decision Making and Applications, CRC/Taylor & Francis (2006).

Google Scholar

[8] Bekey G. A. – Autonomous Robots. From Biological Inspiration to Implementation and Control, The MIT Press, Cambridge, Massachusetts, (2005).

Google Scholar

[9] Jamshidi M. (editor) – Systems of Systems Engineering. Principles and Applications, CRC Press, (2008).

Google Scholar

[10] Labonté F., Cohen P. – Perceptual Aspects of Mining Equipment Teleoperation, in 6th Canadian Symposium on Mining Automation, October 16-18, p.179 – 188, Montréal, (1994).

Google Scholar

[11] Pruski A. – Robotique mobile, la planification de trajectoire, Hermes, (1996).

Google Scholar

[12] Pelecudi Chr., Simionescu I., Moise V., Ene M. – La cinétostatique des mécanismes des systèmes d'horizontalization, Symposium des mécanismes et transmissions mécaniques, Timisoara, 1980. (en roumain).

Google Scholar

[13] Rumiantzev E. K. – Les systèmes hydrauliques des moissonneuses batteuses, Moscou Kolos, 1975 (en russe).

Google Scholar

[14] Lacharité S., Mercier-Roy L. – Véhicule à traction hydrostatique, Projet électromécanique intermédiaire dans le cadre du programme de baccalauréat en génie électromécanique, UQAT, (2005).

Google Scholar

[15] Brossard J. -P. – Dynamique du véhicule. Modélisation des systèmes complexes, Presses Polytechniques Universitaires Romandes, (2006).

Google Scholar

[16] Milliken W. F., Milliken D. L. – Race Car Vehicle Dynamics, SAE, (1995).

Google Scholar

[17] Milliken W. F., Kasprzak E. M., Metz L. D., Milliken D. L. – Race Car Vehicle Dynamics. Problems, Answers and Experiments, , SAE, (2003).

Google Scholar

[8] Gillespie J. P. – Fundamentals of Vehicle Dynamics, SAE, (1992).

Google Scholar

[19] Dukkipati R. V., Pang J., Qatu M. S., Sheng G., Shuguang Z. – Road Vehicle Dynamics, SAE International, (2008).

Google Scholar

[20] Mastinu G., Gobbi M. Miano C. – Optimal Design of Complex Mechanical Systems. With Applications to Vehicle Engineering, Springer, (2006).

Google Scholar

[21] Balandin D. V., Bolotnik N. N., Pilkey W. D. – Optimal Protection from Impact, Shock, and Vibration, Gordon and Breach Science Publishers, (2001).

DOI: 10.1201/9781482283358

Google Scholar

[22] Bosch – Automotive Handbook, 6th Edition, SAE, (2004).

Google Scholar

[23] Ene M. – La dynamique lagrangienne des mécanismes, Fégalma, (2013).

Google Scholar

[24] Popov E. P. – Modern Robot Engineering, MIR Publishers, Moscow, (1982).

Google Scholar

[25] Angeles J. – Fundamentals of Robotic Mechanical Systems. Theory, Methods, and Algorithms, Springer, (1997).

Google Scholar

[26] Pelecudi Chr. – The theory of three-dimensional mechanisms, Editura Academiei Romane, Bucharest, 1972. (in Romanian).

Google Scholar

[26] Ene M. Analysis en synthesis of mechanisms of manipulators with 5 degrees of mobility, Thesis, Bucharest, 1985. (in Romanian).

Google Scholar

[27] Montana D. J. – The Kinematics of Contact and Grasp, The International Journal of Robotics Research, Vol. 7, No. 3, June (1988).

Google Scholar

[28] Ene M. – Introduction à la théorie des mécanismes. Modèles et méthodes, Fégalma, (2013).

Google Scholar

[29] Ene M., Moise V. – Mécanismes à membrures. Une approche structomatique d'analyse avec Matlab, Éditions Printech, (2010).

Google Scholar

[30] Pelecudi Chr., Simionescu I., Ene M., Moise V., Candrea I., Stoenescu M., - Mécanismes à liaisons supérieures. Cames et roues, L'Institut Polytechnique Bucarest, 1982. (en roumain).

Google Scholar

[31] Brunet C. -A., Gonzalez-Rubio R., Tétreault M. – Vers un modèle complet de pilote pour véhicules autonomes: une aproche basée sur les systèmes multi-agents hétérogènes, Troisième Conférence Internationale sur l'automatisation industrielle, Montréal, Canada, 7-9 juin (1999).

Google Scholar

[32] Petrov P., Tétreault M., de Lafontaine J. – Path Control of a Mining Vehicle Based on a Backstepping Approach, Third International Coference on Industrial Automation, Montréal, Canada, June7-9, (1999).

Google Scholar

[33] Tétreault M., Ehsani S. – Analyse cinématique d'un robot mobile de type automobile et stabilisation de la dynamique interne, Troisième Conférence Internationale sur l'automatisation industrielle, Montréal, Canada, 7-9 juin (1999).

Google Scholar

[34] Petrov P., Tétreault M., de Lafontaine J. – Path Control During Backward Driving of a Tractor-Trailer with Off-Axle Hitching, International Conference on Advanced Robotics, Tokyo, Japan, 25-27 October, (1999).

Google Scholar

[35] Petrov P., de Lafontaine J., Tétreault M. – Hybrid Feedback Control for the Parking Problem of a Load-Haul-Dump Mine Vehicle, Proceedings of the 1998 IEEE/RSJ International Confrecne of Intelligent Robots and Systems, Victoria, B. C., Canada, October (1998).

DOI: 10.1109/iros.1998.724875

Google Scholar