[1]
J. Marchi, P. Greil, J. C. Bressiani, A. Bressiani, and F. Müller, Influence of Synthesis Conditions on the Characteristics of Biphasic Calcium Phosphate Powders, International Journal of Applied Ceramic Technology, vol. 6, pp.60-71, (2009).
DOI: 10.1111/j.1744-7402.2008.02254.x
Google Scholar
[2]
D. C. Tancred, B. A. O. McCormack, and A. J. Carr, A synthetic bone implant macroscopically identical to cancellous bone, Biomaterials, vol. 19, pp.2303-2311, (1998).
DOI: 10.1016/s0142-9612(98)00141-0
Google Scholar
[3]
G. S. Kumar, A. Thamizhavel, Y. Yokogawa, S. N. Kalkura, and E. K. Girija, Synthesis, characterization and in vitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications, Materials Chemistry and Physics, vol. 134, pp.1127-1135, (2012).
DOI: 10.1016/j.matchemphys.2012.04.005
Google Scholar
[4]
S. Raynaud, E. Champion, and D. Bernache-Assollant, Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering, Biomaterials, vol. 23, pp.1073-1080, (2002).
DOI: 10.1016/s0142-9612(01)00219-8
Google Scholar
[5]
P. Moghimian, A. Najafi, S. Afshar, and J. Javadpour, Effect of low temperature on formation mechanism of calcium phosphate nano powder via precipitation method, Advanced Powder Technology, vol. 23, pp.744-751, (2012).
DOI: 10.1016/j.apt.2011.10.001
Google Scholar
[6]
V. Simon, D. Lazăr, R. V. F. Turcu, H. Mocuta, K. Magyari, M. Prinz, M. Neumann, and S. Simon, Atomic environment in sol–gel derived nanocrystalline hydroxyapatite, Materials Science and Engineering: B, vol. 165, pp.247-251, (2009).
DOI: 10.1016/j.mseb.2009.06.010
Google Scholar
[7]
J. Shepherd, D. Shepherd, and S. Best, Substituted hydroxyapatites for bone repair, Journal of Materials Science: Materials in Medicine, vol. 23, pp.2335-2347, (2012).
DOI: 10.1007/s10856-012-4598-2
Google Scholar
[8]
I. R. d. Lima, G. G. Alves, G. V. d. O. Fernandes, E. P. Dias, G. d. A. Soares, and J. M. Granjeiro, Evaluation of the in vivo biocompatibility of hydroxyapatite granules incorporated with zinc ions, Materials Research, vol. 13, pp.563-568, (2010).
DOI: 10.1590/s1516-14392010000400021
Google Scholar
[9]
A. Ito, M. Otsuka, H. Kawamura, M. Ikeuchi, H. Ohgushi, Y. Sogo, and N. Ichinose, Zinc-containing tricalcium phosphate and related materials for promoting bone formation, Current Applied Physics, vol. 5, pp.402-406, (2005).
DOI: 10.1016/j.cap.2004.10.006
Google Scholar
[10]
M. Yamaguchi, Role of nutritional zinc in the prevention of osteoporosis, Molecular and Cellular Biochemistry, vol. 338, pp.241-254, (2010).
DOI: 10.1007/s11010-009-0358-0
Google Scholar
[11]
F. Ren, R. Xin, X. Ge, and Y. Leng, Characterization and structural analysis of zinc-substituted hydroxyapatites, Acta Biomaterialia, vol. 5, pp.3141-3149, (2009).
DOI: 10.1016/j.actbio.2009.04.014
Google Scholar
[12]
I. S. Gunawan, A. Naqshbandi, S. Ramesh, Synthesis of Zinc Doped-Biphasic Calcium Phosphate Nanopowder via Sol-Gel Method, Key Engineering Materials, vol. 531-532, pp.614-617, (2013).
DOI: 10.4028/www.scientific.net/kem.531-532.614
Google Scholar
[13]
S. Cazalbou, C. Combes, D. Eichert, and C. Rey, Adaptative physico-chemistry of bio-related calcium phosphates, Journal of Materials Chemistry, vol. 14, pp.2148-2153, (2004).
DOI: 10.1039/b401318b
Google Scholar